[1]盛丹丹.聚类算法在高校院所学生微博的应用研究[J].计算机技术与发展,2022,32(S2):47-51.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 008]
 SHENG Dan-dan.Research on Cluster Algorithm in Institute of Geology and College Students’ Microblogging[J].,2022,32(S2):47-51.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 008]
点击复制

聚类算法在高校院所学生微博的应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年S2期
页码:
47-51
栏目:
大数据分析与挖掘
出版日期:
2022-12-11

文章信息/Info

Title:
Research on Cluster Algorithm in Institute of Geology and College Students’ Microblogging
文章编号:
1673-629X(2022)S2-0047-05
作者:
盛丹丹
中国地震局地质高校院所,北京 100029
Author(s):
SHENG Dan-dan
Institute of Geology,China Earthquake Administration,Beijing 100029,China
关键词:
聚类算法K-Means 算法热门话题检测微博高校院所
Keywords:
clustering algorithmK-Means algorithmhot topic detectionmicrobloggingInstitute of Geology and College
分类号:
TP301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2022. S2. 008
摘要:
近年来,数据采集和存储技术飞速发展,很多领域积累了大量的数据,因而数据挖掘技术被引出。 为探究聚类算法在高校院所学生微博的应用研究,针对 K-Means 算法和聚类分层算法在聚类中心选择不精确的问题,基于高校院所学生使用微博的背景,对微博文本挖掘应用中聚类算法的应用进行了改进。 通过文本的矢量表示,文本相似度计算和聚类算法的实现,验证了聚类算法在微博热门话题检测的准确性和效率,并针对实验数据提出几点针对性的措施。
Abstract:
In recent years,the rapid development of data collection and storage technology,many areas have accumulated a lot of data,such as microblogging, then data mining is derived. Based on the problem of inaccurate selection of K - Means algorithm andagglomerative hierarchical clustering algorithm under the background? ? of Institute of Geology and college students’ use of microblogging,improvement was made regarding the use of clustering algorithm in the application of text mining. It was verified that the accuracy andefficiency of hot topic detection had been enhanced via vector representation of the text,text similarity calculation, and implementation ofclustering algorithm and we put forward some specific measures for the experimental data.

相似文献/References:

[1]方杰 张结魁 周军.基于有向带权图的页面聚类算法研究[J].计算机技术与发展,2009,(09):49.
 FANG Jie,ZHANG Jie-kui,ZHOU Jun.Study on Page Clustering Algorithms Based on Weighted Directed Graph[J].,2009,(S2):49.
[2]李静 陈立潮 成洪静 聂跃光.基于Delaunay三角网的CBDT聚类算法研究[J].计算机技术与发展,2009,(01):21.
 LI Jing,CHEN Li-chao,CHENG Hong-jing,et al.Study of Spatial Clustering Algorithm Based on Delaunay Triangulation[J].,2009,(S2):21.
[3]金萍 王浩 宗瑜 李明楚.基于调整学习的聚类算法[J].计算机技术与发展,2009,(02):58.
 JIN Ping,WANG Hao,ZONG Yu,et al.Clustering Algorithm Based on Fine- Tuned Learning[J].,2009,(S2):58.
[4]吴庆棋 林江云.基于聚类优化GMM提高说话人识别性能的研究[J].计算机技术与发展,2009,(04):35.
 WU Qing-qi,LIN Jiang-yun.A Study on GMM Optimization with Clustering for Improving Speaker Recognition[J].,2009,(S2):35.
[5]耿筱媛 张燕平 闫屹.改进的K—means算法在电信客户细分中的应用[J].计算机技术与发展,2008,(05):163.
 GENG Xiao-yuan,ZHANG Yan-ping,YAN Yi.Application of Improved K - means Algorithm Subdivision of Telecom Clients[J].,2008,(S2):163.
[6]朱永红.覆盖聚类算法的应用研究[J].计算机技术与发展,2007,(01):123.
 ZHU Yong-hong.Application Study on Covering Clustering Algorithm[J].,2007,(S2):123.
[7]王鑫 王洪国 王珺 王金枝[].数据挖掘中聚类方法比较研究[J].计算机技术与发展,2006,(10):20.
 WANG Xin,WANG Hong-guo,WANG Jun,et al.Comparison of Clustering Methods in Data Mining[J].,2006,(S2):20.
[8]赵慧 刘希玉 崔海青.网格聚类算法[J].计算机技术与发展,2010,(09):83.
 ZHAO Hui,LIU Xi-yu,CUI Hai-qing.Grid-Based Clustering Algorithm[J].,2010,(S2):83.
[9]黄韬 刘胜辉 谭艳娜.基于k-means聚类算法的研究[J].计算机技术与发展,2011,(07):54.
 HUANG Tao,LIU Sheng-hui,TAN Yan-na.Research of Clustering Algorithm Based on K-means[J].,2011,(S2):54.
[10]周峰 李龙澍.结合蚁群聚类算法的模糊C均值聚类[J].计算机技术与发展,2012,(07):45.
 ZHOU Feng,LI Long-shu.Fuzzy C Mean Clustering Combined Ant Colony Clustering Algorithm[J].,2012,(S2):45.

更新日期/Last Update: 2022-10-10