[1]陈静静,刘 升.基于改进天牛群算法优化 SVM 的个人信用评估[J].计算机技术与发展,2021,31(06):135-139.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 024]
 CHEN Jing-jing,LIU Sheng.Personal Credit Evaluation Based on SVM Optimized by ImprovedBeetle Swarm Optimization Algorithm[J].,2021,31(06):135-139.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 024]
点击复制

基于改进天牛群算法优化 SVM 的个人信用评估()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年06期
页码:
135-139
栏目:
应用前沿与综合
出版日期:
2021-06-10

文章信息/Info

Title:
Personal Credit Evaluation Based on SVM Optimized by ImprovedBeetle Swarm Optimization Algorithm
文章编号:
1673-629X(2021)06-0135-05
作者:
陈静静刘 升
上海工程技术大学 管理学院,上海 201620
Author(s):
CHEN Jing-jingLIU Sheng
School of Management,Shanghai University of Engineering Science,Shanghai 201620,China
关键词:
支持向量机信用风险评估天牛群算法参数优化随机森林
Keywords:
support vector machinepersonal credit evaluationbeetle swarm optimization algorithmparameter optimizationrandom forest
分类号:
TP18
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 06. 024
摘要:
由于支持向量机(SVM) 的分类性能受参数影响较大,为了提高 SVM 在个人信用评估中的精度,提出基于改进天牛群算法优化 SVM 的个人信用评估方法。 在对天牛的速度更新时加入天牛的自身判断,更加贴合生物觅食本性;通过改进收缩因子来优化学习因子,更好地协调局部与全局搜索之间的平衡;引入正态分布函数,自适应调整步长,改善算法收敛速度慢且易陷入局部极值的缺点。 利用获取的较优参数来构建分类模型,进而提高 SVM 的分类性能。 采用 UCI 中的 4个数据集,并与其他参数优化方法进行对比,实验证明 IBSO-SVM 具有较高的寻优性能。 为了验证改进模型在信用评估方面的性能,首先通过随机森林对信用数据 German 的特征进行了筛选,随后对处理过的数据进行实例分析,结果证明了混合模型的有效性。
Abstract:
The classification performance of support vector machine (SVM) is greatly affected by parameters. In order? ?to improve the accuracy of SVM in the personal credit evaluation,a personal credit evaluation method based on SVM optimized by improved beetle swarm algorithm is proposed. When updating the speed of the beetle, the self-judgment of the beetle is added,which is more consistent with the nature of biological foraging. By improving the contraction factor to optimize the learning factor,the balance between local search and global search can be better coordinated. The normal distribution function is introduced to adjust the step,so as to amend its deficiencies,such as slow convergence speed and easy falling into local optimum. The optimal parameters are used to construct the classification model to improve the classification performance of SVM. The experiment uses four UCI data sets and compares them with other parameter optimization methods. It is showed that IBSO-SVM has a high optimization performance. Finally,the verification is based on the German data set which is processed by random forest. The experimental results prove the effectiveness of the improved algorithm.

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(06):125.
[2]陈俏 曹根牛 陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,(01):247.
 CHEN Qiao,CAO Gen-niu,CHEN Liu.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].,2010,(06):247.
[3]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(06):75.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(06):17.
[5]曹庆璞 董淑福 罗赟骞.网络时延的混沌特性分析及预测[J].计算机技术与发展,2010,(04):43.
 CAO Qing-pu,DONG Shu-fu,LUO Yun-qian.Chaotic Analysis and Prediction of Internet Time- Delay[J].,2010,(06):43.
[6]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(06):84.
[7]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(06):21.
[8]孙秋凤.microRNA计算识别中的模式识别技术[J].计算机技术与发展,2010,(06):97.
 SUN Qiu-feng.Pattern Recognition Technology for MicroRNA Identification[J].,2010,(06):97.
[9]刘振岩 王勇 陈立平 马俊杰 陈天恩.基于SVM的农业智能决策Web服务的研究与实现[J].计算机技术与发展,2010,(06):213.
 LIU Zhen-yan,WANG Yong,CHEN Li-ping,et al.Research and Implementation of Intelligence Decision Web Services Based on SVM for Digital Agriculture[J].,2010,(06):213.
[10]王李冬.一种新的人脸识别算法[J].计算机技术与发展,2009,(05):147.
 WANG Li-dong.A New Algorithm of Face Recognition[J].,2009,(06):147.

更新日期/Last Update: 2021-06-10