[1]杨思渊,蒋锐鹏,海仁古丽·阿不力提甫,等.基于相似度计算方法的人脸图分割[J].计算机技术与发展,2021,31(06):46-51.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 009]
 YANG Si-yuan,JIANG Rui-peng,Hairenguli·ABULITIFU,et al.Face Image Segmentation Based on Similarity Calculation Method[J].,2021,31(06):46-51.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 009]
点击复制

基于相似度计算方法的人脸图分割()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年06期
页码:
46-51
栏目:
图形与图像
出版日期:
2021-06-10

文章信息/Info

Title:
Face Image Segmentation Based on Similarity Calculation Method
文章编号:
1673-629X(2021)06-0046-06
作者:
杨思渊蒋锐鹏海仁古丽·阿不力提甫姑丽加玛丽·麦麦提艾力*
新疆师范大学 数学科学学院,新疆 乌鲁木齐 830017
Author(s):
YANG Si-yuanJIANG Rui-pengHairenguli·ABULITIFUGulijiamali·MAIMAITIAILI*
School of Mathematical Science,Xinjiang Normal University,Urumqi 830017,China
关键词:
支持向量机K-means图像分割相似度计算机器学习
Keywords:
support vector machineK-meansimage segmentationsimilarity calculationmachine learning
分类号:
TP391.9
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 06. 009
摘要:
结合监督和非监督学习模型实现了人脸图像的自动分割。 图像分割中一般常用监督学习模型,这种学习模型受不同分类标志图像数据的限制,结合非监督学习模型,可以有效解决资源有限条件下的图像自动分割。 该文首先用监督学习模型 SVM( 支持向量机) 进行人脸图像分割,这种方法需要人工找出 SVM 中不同类别的支持向量,在实验中发现同一张图像进行多次实验分割效果不一致,存在较大的人为误差。 为了实现支持向量的自动选取,该文用非监督学习模型K-means 得到人脸图的不同类别作为 SVM 的支持向量,提出了相似度计算方法。 并对输入的支持向量数据进行优化,提高了 SVM 的运算效率。 实验结果表明,通过这种方法得到的 SVM 学习模型的分类结果和图像分割误差指标明显比单独使用非监督学习模型 K-means 方法好。
Abstract:
The supervised and unsupervised learning models are combined to realize automatic segmentation of face images. Supervised learning models are generally commonly used in image segmentation,which is limited by the image data of different classification signs.Combined with the unsupervised learning model, it can effectively solve the automatic image segmentation under limited resources.Firstly,we use the supervised learning model SVM (support vector machine) to segment the face image. This method requires manual identification of the support vectors of different categories in the SVM. In the experiment,it is found that the same image is divided into multiple experiments with inconsistent results and large human error. In order? to realize the automatic selection of support vectors,we use the unsupervised learning model K-means to obtain different types of face images as the support vectors of SVM,and propose a similarity calculation method. The input support vector data is optimized to improve the operation efficiency of SVM. The experiment shows that the classification results and image segmentation error indicators of the SVM learning model obtained by this method are significantly better than using the unsupervised learning model K-means method alone.

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(06):125.
[2]陈俏 曹根牛 陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,(01):247.
 CHEN Qiao,CAO Gen-niu,CHEN Liu.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].,2010,(06):247.
[3]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(06):75.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(06):17.
[5]曹庆璞 董淑福 罗赟骞.网络时延的混沌特性分析及预测[J].计算机技术与发展,2010,(04):43.
 CAO Qing-pu,DONG Shu-fu,LUO Yun-qian.Chaotic Analysis and Prediction of Internet Time- Delay[J].,2010,(06):43.
[6]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(06):84.
[7]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(06):21.
[8]孙秋凤.microRNA计算识别中的模式识别技术[J].计算机技术与发展,2010,(06):97.
 SUN Qiu-feng.Pattern Recognition Technology for MicroRNA Identification[J].,2010,(06):97.
[9]刘振岩 王勇 陈立平 马俊杰 陈天恩.基于SVM的农业智能决策Web服务的研究与实现[J].计算机技术与发展,2010,(06):213.
 LIU Zhen-yan,WANG Yong,CHEN Li-ping,et al.Research and Implementation of Intelligence Decision Web Services Based on SVM for Digital Agriculture[J].,2010,(06):213.
[10]王李冬.一种新的人脸识别算法[J].计算机技术与发展,2009,(05):147.
 WANG Li-dong.A New Algorithm of Face Recognition[J].,2009,(06):147.

更新日期/Last Update: 2021-06-10