[1]周康,万良.基于自编码网络和聚类的入侵检测技术[J].计算机技术与发展,2019,29(05):107-111.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 023]
 ZHOU Kang,WAN Liang.Intrusion Detection Technology Based on Self-coded Networks and Clustering[J].,2019,29(05):107-111.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 023]
点击复制

基于自编码网络和聚类的入侵检测技术()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年05期
页码:
107-111
栏目:
安全与防范
出版日期:
2019-05-10

文章信息/Info

Title:
Intrusion Detection Technology Based on Self-coded Networks and Clustering
文章编号:
1673-629X(2019)05-0107-05
作者:
周康1万良2
1. 贵州大学 计算机科学与技术学院,贵州 贵阳 550025;2. 贵州大学 软件与理论研究所,贵州 贵阳 550025
Author(s):
ZHOU Kang1WAN Liang2
1. School of Computer Science and Technology,Guizhou University,Guiyang 550025,China;2. Institute of Software and Theory,Guiyang 550025,China
关键词:
模糊C均值遗传算法限制玻尔兹曼机自编码网络特征降维双向映射
Keywords:
fuzzy C-meansgenetic algorithmrestricted Boltzmann machineautoencoder networkfeature dimensionality reductionbidirectional mapping
分类号:
TP301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 05. 023
摘要:
针对模糊 C 均值聚类算法的入侵检测方法易陷入局部最优,受时间和空间复杂度约束,检测速率低并且使用原始数据集容易陷入“维度灾难冶等问题,提出了一种基于自编码网络(AN)特征降维结合遗传算法(GA)优化模糊 C 均值算法的聚类模型(AN-GA-FCM)。 该模型采用多层限制玻尔兹曼机(RBM)将高维、非线性的数据双向映射到低维空间,建立高维空间到低维空间的自编码网络,进而使用自编码网络权值微调重构低维空间数据的最优高维表示。 并利用遗传算法优化的 FCM 初始聚类中心,避免目标函数陷入局部最优。 将得到的特征降维数据集通过 GA-FCM 进行分类并在KDD爷99 数据集上进行检测,通过与 PCA,SVM,Softmax 等传统算法的实验对比,结果表明,该模型具有较高的入侵检测准确率和较低的分类检测时间。
Abstract:
The intrusion detection method for the fuzzy C-means clustering algorithm is easy to fall into the local optimal,constrained by the time and space complexity,with low detection rate and easy to fall into the “ dimensional disaster ” and other problems using the original data set. For these problems,we propose a novel fuzzy C-means algorithm clustering model (AN-GA-FCM) based on genetic algorithm (GA) optimization combined with auto-encoder network (AN). This model uses multi-layer restricted Boltzmann machine (RBM) to bidirectionally map high-dimensional and nonlinear data into low-dimensional space,establishes high-dimensional space to low-dimensional autoencoder network,and then uses autoencoder network weights to fine-tune parameter,reconstructing the optimal highdimensional representation to low-dimensional spatial data. The FCM initial clustering center optimized by the genetic algorithm is to avoid objective function falling into a local optimum. The dimensionality reduction datasets are classified by GA-FCM detected on the KDD’99 dataset. Meanwhile,compared with the traditional algorithms such as PCA,SVM and Softmax with the model,it shows that the model has higher intrusion detection accuracy and lower classification detection time.

相似文献/References:

[1]冯智明,苏一丹,覃华,等.基于遗传算法的聚类与协同过滤组合推荐算法[J].计算机技术与发展,2014,24(01):35.
 FENG Zhi-ming,SU Yi-dan,QIN Hua,et al.Recommendation Algorithm of Combining Clustering with Collaborative Filtering Based on Genetic Algorithm[J].,2014,24(05):35.
[2]余晓光 严洪森 殷乾坤.基于Flexsim的车间调度优化[J].计算机技术与发展,2010,(03):44.
 YU Xiao-guang,YAN Hong-sen,YIN Qian-kun.Workshops Scheduling Optimization Based on Flexsim Simulation[J].,2010,(05):44.
[3]贺计文 宋承祥 刘弘.基于遗传算法的八数码问题的设计及实现[J].计算机技术与发展,2010,(03):105.
 HE Ji-wen,SONG Cheng-xiang,LIU Hong.Design and Implementation of Eight Puzzle Problem Based on Genetic Algorithms[J].,2010,(05):105.
[4]沈珏萍 庄亚明.基于Agent的二级供应链企业自动谈判研究[J].计算机技术与发展,2010,(03):121.
 SHEN Jue-ping,ZHUANG Ya-ming.A Research for Company Automatic Negotiation in Secondary Supply Chain Based on Agent[J].,2010,(05):121.
[5]张磊 王晓军.基于遗传算法的业务流程测试[J].计算机技术与发展,2010,(03):155.
 ZHANG Lei,WANG Xiao-jun.Test of Business Process Based on Genetic Algorithm[J].,2010,(05):155.
[6]曹道友 程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44.
 CAO Dao-you,CHENG Jia-xing.A Genetic Algorithm Based on Modified Selection Operator and Crossover Operator[J].,2010,(05):44.
[7]范维博 周俊 许正良.应用遗传算法求解第一类装配线平衡问题[J].计算机技术与发展,2010,(02):194.
 FAN Wei-bo,ZHOU Jun,XU Zheng-liang.Appication of Genetic Algorithm to Assembly Line Balancing[J].,2010,(05):194.
[8]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(05):9.
[9]余晓光 严洪森.基于禁忌搜索遗传混合算法的装配线平衡[J].计算机技术与发展,2010,(05):5.
 YU Xiao-guang,YAN Hong-sen.Assembly Line Balancing Based on Tabu Search and Genetic Hybrid Algorithm[J].,2010,(05):5.
[10]黄永聪 张旭[] 吴义纯 吴琦 程家兴.改进的径向基函数网络的研究及应用[J].计算机技术与发展,2010,(05):158.
 HUANG Yong-cong,ZHANG Xu,WU Yi-chun,et al.Research and Application of Improved Genetic Algorithm-Based RBFANN[J].,2010,(05):158.

更新日期/Last Update: 2019-05-10