[1]龚林松,李士进.基于改进的SLIC和OTSU的遥感影像水体提取[J].计算机技术与发展,2019,29(01):145-149.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 030]
 GONG Lin-song,LI Shi-jin.Water Information Extraction from Remote Sensing Imagery Based onImproved SLIC and OTSU[J].,2019,29(01):145-149.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 030]
点击复制

基于改进的SLIC和OTSU的遥感影像水体提取()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年01期
页码:
145-149
栏目:
应用开发研究
出版日期:
2019-01-10

文章信息/Info

Title:
Water Information Extraction from Remote Sensing Imagery Based onImproved SLIC and OTSU
文章编号:
1673-629X(2019)01-0145-05
作者:
龚林松 李士进
河海大学 计算机与信息学院,江苏 南京,210098
Author(s):
GONG Lin-songLI Shi-jin
School of Computer and Information,Hohai University,Nanjing 210098,China
关键词:
遥感图像 水体提取 SLIC 归一化差异水体指数 OTSU
Keywords:
remote sensing imagewater body extractionSLICnormalized difference water indexOTSU
分类号:
TP753
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 01. 030
摘要:
水体信息提取是水资源管理的重要组成部分,近二十年来关于从遥感图像中提取水体信息的研究有许多.基于卫星遥感的陆地水体提取方法多种多样,利用水体指数的OTSU算法就是一种较为常见的水体提取方法,但是其存在阈值选取困难和提取精度不足的问题.为了进一步解决该问题,将改进的SLIC和OTSU算法引入到水体信息的提取中.考虑到水体指数对于水体信息提取的重要性,首先利用超像素生成算法SLIC结合归一化水体指数(NDWI)生成一个个超像素,以超像素内水体指数值的均值代表这个超像素的水体指数.然后以超像素为基础,使用OTSU算法对超像素水体指数做阈值分割.实验结果表明,提出的算法不仅有很高的提取精度,提取的速度也很快,能够有效地提取出水体信息.
Abstract:
Water information extraction is an important part of water resources management. There have been many researches on waterinformation extraction from remote sensing images in the past two decades. There are a variety of land-based water extraction methodsbased on satellite remote sensing. OTSU algorithm using water index is a relatively common one,but it is difficult to select the thresholdand the extraction accuracy is insufficient. For this,we introduce the improved SLIC and OTSU algorithm into water information extrac-tion. Considering the importance of water index for water information extraction,we combine SLIC,a super-pixel generation algorithm,and NDWI,the normalized water index,to generate each super-pixel,and the mean value of water index within the super-pixel representsthe water index of this super-pixel. Then based on super-pixel,OTSU algorithm is used to conduct the threshold segmentation of the wa-ter index in the super-pixel. Experiment shows that the proposed algorithm not only has a high extraction accuracy,but also a fast extrac-tion speed,which can effectively extract water information.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(01):36.
[2]赵艳飞 高清维 卢一相.基于多尺度Retinex算法的遥感图像增强[J].计算机技术与发展,2008,(02):70.
 ZHAO Yan-fei,GAO Qing-wei,LU Yi-xiang.Remote Sensing Image Enhancement Based on Multi- Scale Retinex Algorithm[J].,2008,(01):70.
[3]陈昌生 许文波 赵健.基于ArcSDE的卫星遥感影像数据库研究[J].计算机技术与发展,2010,(07):80.
 CHEN Chang-sheng,XU Wen-bo,ZHAO Jian.Research on Remote Sensing Image Database Based on ArcSDE[J].,2010,(01):80.
[4]李晓飞 马大玮 范小麟 胡焰智.基于数学形态学的遥感图像多感兴趣区域提取[J].计算机技术与发展,2007,(12):56.
 LI Xiao-fei,MA Da-wei,FAN Xiao-lin,et al.Extraction of ROIs Based on Mathematical Morphology toward Applications on Remote Sense Image Processing[J].,2007,(01):56.
[5]董敏[],阎镇.基于CUDA的航天遥感图像实时快视系统的研究[J].计算机技术与发展,2014,24(06):32.
 DONG Min[][][],YAN Zhen[].Research on Aerospace Remote Sensing Images Real-time Quick-view System Based on CUDA[J].,2014,24(01):32.
[6]张亚亚,张立民,刘小伟,等. 基于语义网的遥感图像分类[J].计算机技术与发展,2015,25(05):218.
 ZHANG Ya-ya,ZHANG Li-min,LIU Xiao-wei,et al. Remote Sensing Image Classification Based on Semantic-net[J].,2015,25(01):218.
[7]黄涛[][],薛丰昌[],钱洪亮[],等. 基于 NSCT 和自适应模糊阈值遥感图像去噪算法[J].计算机技术与发展,2016,26(01):65.
 HUANG Tao[][],XUE Feng-chang[],QIAN Hong-liang[],et al. Remote Sensing Image Denoising Algorithm Based on NSCT and Adaptive Fuzzy Threshold[J].,2016,26(01):65.
[8]朱小明.基于多光谱遥感图像信息的水质污染监测研究[J].计算机技术与发展,2018,28(11):52.[doi:10.3969/ j. issn.1673-629X.2018.11.012]
 ZHU Xiao-ming.Research on Water Quality Monitoring Based on Multi-spectral Remote Sensing Imagery[J].,2018,28(01):52.[doi:10.3969/ j. issn.1673-629X.2018.11.012]
[9]岳钦崟,李 虎.基于 MPI 并行遥感典型地类提取应用[J].计算机技术与发展,2020,30(07):104.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 023]
 YUE Qin-yin,LI Hu.Application of MPI-based Parallel Remote Sensing for Typical Ground Classification Extraction[J].,2020,30(01):104.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 023]
[10]张永福,宋海林,班 越,等.融合特征的深度学习遥感图像目标检测模型[J].计算机技术与发展,2021,31(09):48.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 009]
 ZHANG Yong-fu,SONG Hai-lin,BAN Yue,et al.Fusion Features Based Deep Learning Remote Sensing Image Target Detection Model[J].,2021,31(01):48.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 009]

更新日期/Last Update: 2019-01-10