[1]唐丹[],张正军[],王俐莉[]. 基于改进的近邻传播聚类算法的Gap统计研究[J].计算机技术与发展,2017,27(01):182-185.
 TANG Dan[],ZHANG Zheng-jun[],WANG Li-li[]. Study on Gap Statistic Based on Modified Affinity Propagation Clustering[J].,2017,27(01):182-185.
点击复制

 基于改进的近邻传播聚类算法的Gap统计研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年01期
页码:
182-185
栏目:
应用开发研究
出版日期:
2017-01-10

文章信息/Info

Title:
 Study on Gap Statistic Based on Modified Affinity Propagation Clustering
文章编号:
1673-629X(2017)01-0182-04
作者:
 唐丹[1]张正军[1]王俐莉[2]
 1.南京理工大学 理学院 统计与金融数学系;2.海军指挥学院科研部
Author(s):
 TANG Dan[1]ZHANG Zheng-jun[1]WANG Li-li[2]
关键词:
 聚类分析近邻传播聚类偏向参数K-means算法Gap统计
Keywords:
 cluster analysisaffinity propagation clustering preferenceK-means algorithmGap statistic
分类号:
TP301.6
文献标志码:
A
摘要:
 由于K-means算法初始聚类中心的选取具有随机性,聚类结果可能不稳定,导致Gap统计估计的聚类数也可能不稳定。针对这些不足,提出一种改进的近邻传播算法-mAP。该算法考察数据的全局分布特性,不同的点赋予不同的P值。在Gap统计中用mAP算法代替K-means算法,提出基于mAP的Gap统计mAPGap。 mAP能在较短的时间内得到较好的聚类效果,而且不需要预先设定初始聚类中心,聚类结果更稳定。实验结果表明,mAPGap在估计聚类数的稳定性和聚类精度上都优于原Gap。
Abstract:
 Due to the randomness of choosing the initial clustering of K-means method,it may cause the instability of clustering results and then lead to that of clustering numbers which are estimated by Gap statistic. Taking consideration of those disadvantages,an modified AP clustering ( mAP) is presented which utilizes the global distribution to give different P to different points. mAP method is put forward to substitute the K-means in Gap statistic named mAPGap. mAP method has more stable clustering center because the initial clustering center and numbers are not needed in advance and it can get better clustering in short time. The experimental results demonstrate mAPGap is superior to Gap in clustering stability and accuracy.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(01):120.
[2]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(01):69.
[3]狄明明 孙德山.聚类分析和支持向量机在股票研究中的应用[J].计算机技术与发展,2009,(06):229.
 DI Ming-ming,SUN De-shan.Applications of Cluster Analysis and Support Vector Machines to Stock Research[J].,2009,(01):229.
[4]李雷 罗红旗 丁亚丽.一种改进的模糊C均值聚类算法[J].计算机技术与发展,2009,(12):71.
 LI Lei,LUO Hong-qi,DING Ya-li.A Novel FCM Clustering Algorithm[J].,2009,(01):71.
[5]李丽芳 周鸣争.一种基于构造性核覆盖的聚类算法[J].计算机技术与发展,2009,(01):88.
 LI Li-fang,ZHOU Ming-zheng.A Clustering Algorithm Based on Constructive Kernel Covering Algorithm[J].,2009,(01):88.
[6]朱桂宏 王刚.基于数据流的网络入侵检测研究[J].计算机技术与发展,2009,(03):175.
 ZHU Gui-hong,WANG Gang.Research on Network Intrusion Detection Based on Data Stream[J].,2009,(01):175.
[7]罗世谦 冯子亮 张恒.一种基于能量聚类分析的句子语音端点检测法[J].计算机技术与发展,2008,(04):13.
 LUO Shi-qian,FENG Zi-liang,ZHANG Heng.A Sentential Endpoint Detection Algorithm Based on Energy Eigenvalue and Clustering Analysis[J].,2008,(01):13.
[8]谢铮桂 韦玉科 钟少丹.基于径向基神经网络用于中医舌诊诊断的研究[J].计算机技术与发展,2008,(09):242.
 XIE Zheng-gui,WEI Yu-ke,ZHONG Shao-dan.Research of RBF Neural Networks Based on Clustering Analysis in TCM Inspection of Tongue Diagnosis[J].,2008,(01):242.
[9]徐仰彬 刘志镜.基于DBSCAN的簇共享对象的处理办法[J].计算机技术与发展,2007,(07):38.
 XU Yang-bin,LIU Zhi-jing.A DBSCAN - Based Algorithm for Boundary Object of Cluster[J].,2007,(01):38.
[10]朱建平 曾玉钰.基于属性重要性的定性数据聚类分析及应用[J].计算机技术与发展,2007,(12):89.
 ZHU Jian-ping,ZENG Yu-yu.Analysis and Application of Qualitative Data Clustering Approach Based on Attribute Importance[J].,2007,(01):89.
[11]孙吉红[][],张丽莲[] [],武尔维[][],等. 基于智能算法的价格预测模型探究[J].计算机技术与发展,2014,24(11):107.
 SUN Ji-hong[][],ZHANG Li-lian[][],WU Er-wei[][],et al. Research on Price Prediction Model Based on Intelligent Algorithm[J].,2014,24(01):107.
[12]文念,黄丽亚,于涵,等. 基于ICA和聚类的EEG脑源定位研究[J].计算机技术与发展,2015,25(05):228.
 WEN Nian,HUANG Li-ya,YU Han,et al. EEG Sources Localization Based on Independent Component Analysis and Clustering[J].,2015,25(01):228.
[13]尚福华[],姜萌[],马楠[],等. 基于改进马氏聚类方法的油田分类研究[J].计算机技术与发展,2015,25(08):175.
 SHANG Fu-hua[],JIANG Meng[],MA Nan[],et al. Research on Oil Classification Based on Improved Mahalanobis Clustering Method[J].,2015,25(01):175.
[14]许必宵,陈升波,韩重阳,等. 改进的数据预处理算法及其应用[J].计算机技术与发展,2015,25(12):143.
 XU Bi-xiao,CHEN Sheng-bo,HAN Chong-yang,et al. Improved Data Preprocessing Algorithm and Its Application[J].,2015,25(01):143.
[15]王文霞. 基于分级策略和聚类索引树的构件检索方法[J].计算机技术与发展,2016,26(04):110.
 WANG Wen-xia. A Component Retrieval Method Based on Classified Policy and Cluster Index Tree[J].,2016,26(01):110.

更新日期/Last Update: 2017-04-05