[1]谢立志,李玉惠,李勃. 一种基于视觉特性加权的图像质量评价方法[J].计算机技术与发展,2016,26(08):177-181.
 XIE Li-zhi,LI Yu-hui,LI Bo. An Image Quality Assessment Method Based on Visual Features Weighting[J].,2016,26(08):177-181.
点击复制

 一种基于视觉特性加权的图像质量评价方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年08期
页码:
177-181
栏目:
应用开发研究
出版日期:
2016-08-10

文章信息/Info

Title:
 An Image Quality Assessment Method Based on Visual Features Weighting
文章编号:
1673-629X(2016)08-0177-05
作者:
 谢立志李玉惠李勃
 昆明理工大学 信息工程与自动化学院
Author(s):
 XIE Li-zhiLI Yu-huiLI Bo
关键词:
 图像处理图像质量评价 人眼视觉特性梯度幅值结构相似度峰值信噪比
Keywords:
 image processingimage quality evaluationhuman visual characteristicsgradient magnitude structural similaritypeak signal to noise ratio
分类号:
TP301
文献标志码:
A
摘要:
 图像质量评价在视频图像的各种应用中起着重要的作用。由于结构相似度图像质量评价方法在利用视觉特性方面的不足,因此文中在结构相似度图像质量评价方法的基础上,引入包含重要视觉信息的梯度幅值和对不同频率感知差异的对比敏感度特性对其进行改进,提出了一种基于视觉特性加权的图像质量评价方法。首先采用Sobel算子计算图像的梯度幅值,对结构相似度评价方法进行改进;再利用对比敏感度函数计算图像块的感知因子,给图像块赋予相应的权值;最后通过图像块评价值的加权得到整体评价值。实验结果表明,该算法优于结构相似度和峰值信噪比图像质量评价方法,更好地反映了人眼的主观感受。
Abstract:
 Image quality assessment plays an important role in a variety of applications for video images. Because of the deficiency of the image quality assessment method based on structural similarity in visual characteristics,on the basis of image quality assessment method of structure similarity,the gradient magnitude which contains the important visual information is introduced and the contrast sensitivity char-acteristics which is the differences in the perception of different frequency to improve,presentation of a method of image quality assess-ment based on visual features weighting. Firstly,the method of structural similarity evaluation is improved by gradient magnitude which is calculated with Sobel operator. Then,the perception factors of image block is calculated with the contrast sensitivity function,and the weight is given to the image block. Finally,the whole evaluation value is obtained by adding the image block evaluation value by weight of the image block. Experimental results show that the proposed algorithm is superior to structural similarity and peak signal to noise ratio of image quality assessment method,and better to reflect the subjective feelings of the human eye.

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(08):125.
[2]张艳丽 保文星.粒子群优化算法在图像边缘检测中的研究应用[J].计算机技术与发展,2009,(05):26.
 ZHANG Yan-li,BAO Wen-xing.Research and Application of Image Edge Detection Based on PSO Algorithm[J].,2009,(08):26.
[3]詹金兰 李翠华.模拟实验系统的可视化研究[J].计算机技术与发展,2009,(05):228.
 ZHAN Jin-lan,LI Cui-hua.Visualization Research on Simulation Experiment System[J].,2009,(08):228.
[4]张家栋 张强 霍凯.图像处理在轴承荧光磁粉探伤中的应用研究[J].计算机技术与发展,2009,(08):216.
 ZHANG Jia-dong,ZHANG Qiang,HUO Kai.Study on Application of Image Processing in Bearing Fluorescent Magnetic Detection[J].,2009,(08):216.
[5]王文豪 张亚红 朱全银 单劲松.QR Code二维条形码的图像识别[J].计算机技术与发展,2009,(10):123.
 WANG Wen-hao,ZHANG Ya-hong,ZHU Quan-yin,et al.Image Recognition in 2 - D Bar Code Based on QR Code[J].,2009,(08):123.
[6]李孟歆 吴成东.粗糙集理论在图像处理中的应用[J].计算机技术与发展,2009,(03):208.
 LI Meng-xin,WU Cheng-dong.Rough Set Theory and Its Applications in Image Processing[J].,2009,(08):208.
[7]武彬.一种离焦模糊图像的复原方法[J].计算机技术与发展,2008,(01):74.
 WU Bin.A Method of Defocus Blurred Image Restoration[J].,2008,(08):74.
[8]蒋恩松 肖辉军 孙刘杰 熊清廉.基于机器视觉的套印误差自动检测系统设计[J].计算机技术与发展,2008,(07):173.
 JIANG En-song,XIAO Hui-jun,SUN Liu-jie,et al.Design of Automatic Detecting Printing Registration Deviation System Based on Machine Vision[J].,2008,(08):173.
[9]汪继文 林胜华 沈玉峰 邱剑锋.一种基于各向异性扩散的图像处理方法[J].计算机技术与发展,2008,(08):98.
 WANG Ji-wen,LIN Sheng-hua,SHEN Yu-feng,et al.An Approach for Image Restoration Based on Anisotropic Diffusion[J].,2008,(08):98.
[10]余志强 戎蒙恬 袁丹寿.一种用单端口SRAM构成的FIFO的ASIC设计[J].计算机技术与发展,2008,(09):159.
 YU Zhi-qiang,RONG Meng-tian,YUAN Dan-shou.ASIC Design of an FIFO Involving Single Port SRAM[J].,2008,(08):159.
[11]陈鹏宇[],孙文奇[],赵忠龙[]. 基于机器视觉的印刷质量检测研究[J].计算机技术与发展,2014,24(07):103.
 CHEN Peng-yu[],SUN Wen-qi[],ZHAO Zhong-long[]. rinting Quality Detection Based on Machine Vision[J].,2014,24(08):103.
[12]赵颖辉[][],蒋从锋[][]. 遥感影像的高性能并行处理技术研究[J].计算机技术与发展,2014,24(07):201.
 ZHAO Ying-hui[][],JIANG Cong-feng[][]. Research on High Performance Parallel Processing Technology for Remote Sensing Images[J].,2014,24(08):201.
[13]汤智超,苏琳,何超,等. 导盲机器人的交通标志视觉识别技术研究[J].计算机技术与发展,2014,24(09):23.
 TANG Zhi-chao,SU Lin,HEChao,et al. Research on Traffic Sign Visual Recognition Technology of Guiding Robot[J].,2014,24(08):23.
[14]孙全,刘政怡,吴国栋,等. 基于版面理解的选票软件设计[J].计算机技术与发展,2014,24(11):207.
 SUN Quan,LIU Zheng-yi,WU Guo-dong,et al. Design of Voting Software Based on Layout Understanding[J].,2014,24(08):207.
[15]蒋翠清,孙富亮,吴艿芯. 基于相对欧氏距离的背景差值法视频目标检测[J].计算机技术与发展,2015,25(01):37.
 JIANG Cui-qing,SUN Fu-liang,WU Nai-xin. Video Object Detection of Background Subtraction Method Based on Relative Euclidean Distance[J].,2015,25(08):37.
[16]程欢,杨庚. 地埋成像系统中图像冗余删除算法设计与实现[J].计算机技术与发展,2015,25(03):81.
 CHENG Huan,YANG Geng. Design and Implementation of Image Redundant and Deleting Algorithm in Ground Imaging System[J].,2015,25(08):81.
[17]路游,郭江涛,孟庆鑫. 基于Hausdorff距离的图像边缘检测方法[J].计算机技术与发展,2015,25(08):71.
 LU You,GUO Jiang-tao,MENG Qing-xin. A New Method of Edge Detection Based on Hausdorff Distance[J].,2015,25(08):71.
[18]苑玮琦,陈冰洁. 基于窗口提取的虹膜阳光放射沟检测方法研究[J].计算机技术与发展,2015,25(09):213.
 YUAN Wei-qi,CHEN Bing-jie. Research on Iris Radii Solaris Detection Method Based on Window Extraction[J].,2015,25(08):213.
[19]孙建[],李涛[],李雪丹[]. 基于PAAG的图形图像算法的并行实现[J].计算机技术与发展,2015,25(11):61.
 SUN Jian[],LI Tao[],LI Xue-dan[]. Parallel Implementation of Graphics Rendering and Image Processing Algorithm Based on PAAG[J].,2015,25(08):61.
[20]贺国旗[],陈向奎[],韩泉叶[],等. 一种自动提高图像信噪比的方法[J].计算机技术与发展,2015,25(12):60.
 HE Guo-qi[],CHEN Xiang-kui[],HAN Quan-ye[],et al. A Method of Automatically Improving SNR of Image[J].,2015,25(08):60.

更新日期/Last Update: 2016-09-29