[1]陈骁,金鑫. 基于级联Adaboost与示例投票的人脸检测[J].计算机技术与发展,2015,25(12):18-21.
 CHEN Xiao,JIN Xin. Face Detection Based on Cascade Adaboost and Exemplar Voting[J].,2015,25(12):18-21.
点击复制

 基于级联Adaboost与示例投票的人脸检测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年12期
页码:
18-21
栏目:
智能、算法、系统工程
出版日期:
2015-12-10

文章信息/Info

Title:
 Face Detection Based on Cascade Adaboost and Exemplar Voting
文章编号:
1673-629X(2015)12-0018-04
作者:
 陈骁金鑫
 南京航空航天大学 计算机科学与技术学院
Author(s):
 CHEN XiaoJIN Xin
关键词:
 人脸检测LBP特征adaboost算法稀疏编码示例投票
Keywords:
 face detectionLBP featureAdaboost algorithmsparse codingexemplar-based voting
分类号:
TP391
文献标志码:
A
摘要:
 传统的人脸检测算法在复杂背景、极端光照等非控条件下进行人脸检测的误检率较高. 为有效降低误检率,文中提出一种级联adaboost和示例投票的人脸检测方法. 首先采用基于LBP特征的adaboost算法初步定位人脸可能存在的区域,然后通过人脸示例集建立字典,使用稀疏编码的方法利用示例人脸对这些候选区域进行中心位置投票,根据得票数得到判别结果,排除非人脸区域,最终完成人脸检测. 该方法的创新在于将基于字典学习的稀疏编码和基于部件模型的目标检测相结合,级联传统的adaboost算法,实现非控环境下的人脸检测. 在两个数据集上的实验结果表明,该方法在保持较高检测率的同时,有效降低了误检率,且鲁棒性较好.
Abstract:
 In the conditions of complicated backgrounds and extreme illumination,face detection based on Adaboost algorithm usually has a higher false positive rate. Present a cascade of two algorithms in this paper,Adaboost and exemplar-based voting,to detect face in static images which is able to reduce the false-positives efficiently. This method utilizes LBP as features and a cascade Adaboost classifier is used to detect faces,and a voting method based on sparse coding is used as the final classifier to verify face or non-face. The innovation of the proposed method lies in combining sparse coding and part based model for face detection. The experimental result shows that this method can detect face with high detection rate,suppressing the error detection rate,with high robustness.

相似文献/References:

[1]李宏伟 陶亮.复杂背景不同光照条件下彩色图像中人脸检测[J].计算机技术与发展,2009,(02):52.
 LI Hong-wei,TAO Liang.Face Detection in Complicated Backgrounds and Different Illumination Conditions of Color Images[J].,2009,(12):52.
[2]俞扬信 严云洋.视频序列中的人脸检测与定位算法研究[J].计算机技术与发展,2009,(02):109.
 YU Yang-xin,YAN Yun-yang.Algorithm Study of Face Detection and Location in Video Sequence[J].,2009,(12):109.
[3]金燕 陶亮.基于人眼定位的人脸检测与归一化算法[J].计算机技术与发展,2009,(04):95.
 JIN Yan,TAO Liang.Face Detection and Normalization Based on Localization of Human Eyes[J].,2009,(12):95.
[4]佘九华 王敬东 李鹏.基于Camshift的人脸跟踪算法[J].计算机技术与发展,2008,(09):12.
 SHE Jiu-hua,WANG Jing-dong,LI Peng.Face Tracking Algorithm Based on Camshift[J].,2008,(12):12.
[5]李启娟 李金屏.基于轮廓信息的人脸检测[J].计算机技术与发展,2008,(09):108.
 LI Qi-juan,LI Jin-ping.Face Detection Based on Contour Information[J].,2008,(12):108.
[6]陈伟琦 梁一川 易强 秦文虎.基于肤色和Adaboost算法的人脸检测研究[J].计算机技术与发展,2008,(12):44.
 CHEN Wei-qi,LIANG Yi-chuan,YI Qiang,et al.Face Detection Based on Skin Color and Adaboost Arithmetic[J].,2008,(12):44.
[7]贾灵芝 李岚 钱坤喜.基于自适应光线补偿的人脸检测算法[J].计算机技术与发展,2008,(12):120.
 JIA Ling-zhi,LI Lan,QIAN Kun-xi.Face Detection Algorithm Based on Self- adaptive Light Compensation[J].,2008,(12):120.
[8]袁芬萍 季桂树.基于SVM的三阶段人脸检测方法的研究与应用[J].计算机技术与发展,2007,(09):133.
 YUAN Fen-ping,JI Gui-shu.Research and Application about Three- Stage Face Detection Method Based on SVM[J].,2007,(12):133.
[9]王晶 杨煜.基于边缘方向直方图的Adaboost人脸检测[J].计算机技术与发展,2007,(12):5.
 WANG Jing,YANG Yu.Adaboost for Face Detection Based on Edge Orientation Histograms[J].,2007,(12):5.
[10]邵平 杨路明 曾耀荣.计算旋转Harr型特征的积分图像算法改进[J].计算机技术与发展,2006,(11):146.
 SHAO Ping,YANG. Lu-ming,ZENG Yao-rong.An Improved Algorithm of Integral Image for Computing Rotated Harr- Like Features[J].,2006,(12):146.
[11]裴向杰,唐红昇,陈鹏. 融合YCbCr肤色分割的不良图像检测算法研究[J].计算机技术与发展,2015,25(12):80.
 PEI Xiang-jie,TANG Hong-sheng,CHEN Peng. Research on Objectionable Image Detection Algorithm Based on YCbCr Skin Segmentation[J].,2015,25(12):80.
[12]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].,2016,26(12):31.
[13]欧阳杰臣[],黄曜[],高珏[],等. 基于Android人脸美化App的研究与实现[J].计算机技术与发展,2016,26(03):9.
 OUYANG Jie-chen[],HUANG Yao[],GAO Jue[],et al. Research and Implementation of Face Beautification App Based on Android[J].,2016,26(12):9.
[14]邵虹,耿昊. 基于肤色信息和模板匹配的人脸检测与提取[J].计算机技术与发展,2016,26(11):49.
 SHAO Hong,GENG Hao. Face Detection and Extraction Based on Skin-color Information and Template Matching[J].,2016,26(12):49.
[15]王攀,李少波. 基于肤色和FBLBP算法的人脸检测[J].计算机技术与发展,2017,27(01):44.
 WANG Pan,LI Shao-bo. Face Detection Based on Skin Color and FBLBP Algorithm[J].,2017,27(12):44.
[16]陈凡[],童莹[],曹雪虹[]. 复杂环境下基于视觉显著性的人脸目标检测[J].计算机技术与发展,2017,27(01):48.
 CHEN Fan[],TONG Ying[],CAO Xue-hong[]. Face Target Detection of Visual Saliency in Complex Environment[J].,2017,27(12):48.
[17]夏雪婷,胡正飞,潘玲云. 基于OpenCV人脸检测的室内照明自动控制系统[J].计算机技术与发展,2017,27(04):184.
 XIA Xue-ting,HU Zheng-fei,PAN Ling-yun. Indoor Automatic Lighting Control System with OpenCV Face Detection[J].,2017,27(12):184.
[18]翟社平,李炀,马蒙雨,等. 基于LBP和SVM的人脸检测[J].计算机技术与发展,2017,27(09):44.
 ZHAI She-ping,LI Yang,MA Meng-yu,et al. Face Detection Based on LBP and SVM[J].,2017,27(12):44.

更新日期/Last Update: 2016-01-28