[1]王萍,张媛,李聪,等. 基于灰度共生矩阵的特征构建及超折射滤除[J].计算机技术与发展,2014,24(08):1-5.
 WANG Ping,ZHANG Yuan,LI Cong,et al. Feature Construction and AP Clutter Filtering Based on Gray Lever Co-occurrence Matrix[J].,2014,24(08):1-5.
点击复制

 基于灰度共生矩阵的特征构建及超折射滤除()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年08期
页码:
1-5
栏目:
智能、算法、系统工程
出版日期:
2014-08-10

文章信息/Info

Title:
 Feature Construction and AP Clutter Filtering Based on Gray Lever Co-occurrence Matrix
文章编号:
1673-629X(2014)08-0001-05
作者:
 王萍张媛李聪徐考基
 天津大学 电气与自动化工程学院
Author(s):
 WANG PingZHANG YuanLI CongXU Kao-ji
关键词:
 灰度共生矩阵平缓度特征跳变性特征超折射滤除显著性差异
Keywords:
 gray level co-occurrence matrixgentle featurejumping featureAP clutter filteringsignificant difference
分类号:
TP391.41
文献标志码:
A
摘要:
 超折射回波会严重干扰对天气雷达图像中强对流回波的识别。文中从分析超折射回波及强对流回波在雷达反射率图中的分布特点入手,在区域分割的基础上,生成各区域的灰度共生矩阵,将灰度共生矩阵中的元素划分成两个子集,分别用以构建出两个新的特征,即平缓度/跳变性,它们在超折射回波和强对流回波样本之间呈现出显著性差异,配合使用径向速度特征,站在尽量不损失强对流的角度形成能够克服特征缺值的分类决策树。测试结果表明:文中方法较目前业务上普遍使用的模糊逻辑分布式超折射地物识别法,对超折射的滤除率及对强对流云团的保有率更高,特别是文中方法在将对超折射和强对流的识别准确率从96.8%提高到97.9%的前提下,对强对流的滤除率从3.91%降低到0.21%。
Abstract:
 AP clutter can interfere with strong convection echo’ s identification of weather radar image. It starts with AP clutter and strong convection echo’ s distribution characteristics in the radar reflectivity image. On the basis of region division,generate Gray-Level Co-oc-currence Matrix (GLCM). GLCM elements are divided into two subsets,which build two new gentle/jumping feature. These features show significant differences between AP clutter and strong convection echo. Taking into account without loss strong convection, form classification decision tree under using radial velocity characters and gentle/jumping feature. The results show that AP clutter filtering rate and strong convective cloud clusters retention rate is higher than fuzzy logical algorithm to detect AP clutter in business. Under the prem-ise of recognition accuracy of AP clutter and strong convection echo is raised from 96. 8% to 97. 9%,strong convective cloud clusters fil-tering rate is lowered from 3. 91% to 0. 21%.

相似文献/References:

[1]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(08):75.
[2]王森 陈炬桦.基于神经网络和综合特征的车牌定位算法[J].计算机技术与发展,2008,(02):38.
 WANG Sen,CHEN Ju-hua.Algorithm of Car Plate Location Based on Neural Network and Integrated Features[J].,2008,(08):38.
[3]焦蓬蓬 郭依正 刘丽娟 卫星.灰度共生矩阵纹理特征提取的Matlab实现[J].计算机技术与发展,2012,(11):169.
 JIAO Peng-peng,GUO Yi-zheng,LIU Li-juan,et al.Implementation of Gray Level Co-occurrence Matrix Texture Feature Extraction Using Matlab[J].,2012,(08):169.
[4]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[5]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[6]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[7]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[8]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[9]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[10]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.

更新日期/Last Update: 2015-03-17