[1]唐国维,巩淼,张方舟,等.基于模糊神经网络的焊缝缺陷识别的研究[J].计算机技术与发展,2014,24(05):1-4.
 TANG Guo-wei,GONG Miao,ZHANG Fang-zhou,et al.Research on Weld Defects Distinguishing Based on Fuzzy Neural Networks[J].,2014,24(05):1-4.
点击复制

基于模糊神经网络的焊缝缺陷识别的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年05期
页码:
1-4
栏目:
应用开发研究
出版日期:
2014-05-31

文章信息/Info

Title:
Research on Weld Defects Distinguishing Based on Fuzzy Neural Networks
文章编号:
1673-629X(2014)05-0001-04
作者:
唐国维巩淼张方舟李想严胡勇
东北石油大学 计算机与信息技术学院
Author(s):
TANG Guo-weiGONG MiaoZHANG Fang-zhouLI XiangYAN Hu-yong
关键词:
焊缝缺陷图像处理模糊缺陷选取神经网络
Keywords:
eld defectimage processingfuzzydefects selectionneural network
分类号:
TG441.7
文献标志码:
A
摘要:
焊缝缺陷在X射线设备下成像转成数字图像后,分析其图像的特点,进行缺陷的定位与边缘检测,结合人工识别焊缝缺陷的经验选取对焊缝缺陷分类影响因子较大的特征参数。用模糊集合的概念描述特征参数,建立特征参数的模糊规则库,构建以模糊化后的特征参数为输入层,以模糊规则为隐含层,缺陷预知识别分类为输出的模糊神经网络模型。分析实验结果,成功定位缺陷在数字图像中的大概位置与边缘检测。该方法提高了集合交叉较大的焊缝缺陷的识别率,能有效地对缺陷进行识别分类。
Abstract:
After weld defection is converted to digital images under the X-ray equipment,analyze the characteristics of the images for lo-cating defects and detecting edges,select the characteristic parameters,which have larger impact on weld defect classification combined with the experience of artificial identification. Describe the characteristic parameters in the concept of fuzzy set,and establish the fuzzy rule base of characteristic parameters,building the fuzzy neural network model with the fuzzy characteristic parameters as the input layer, and fuzzy rules as the implied layer,and the identification and classification of defecting prediction as output. Analysis of test results show it can successfully locate the defects about position and edge detection in digital images. The method improves the recognition rate of the larger crossed set of weld defection,which can identify the classification effectively.

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(05):125.
[2]张艳丽 保文星.粒子群优化算法在图像边缘检测中的研究应用[J].计算机技术与发展,2009,(05):26.
 ZHANG Yan-li,BAO Wen-xing.Research and Application of Image Edge Detection Based on PSO Algorithm[J].,2009,(05):26.
[3]詹金兰 李翠华.模拟实验系统的可视化研究[J].计算机技术与发展,2009,(05):228.
 ZHAN Jin-lan,LI Cui-hua.Visualization Research on Simulation Experiment System[J].,2009,(05):228.
[4]张家栋 张强 霍凯.图像处理在轴承荧光磁粉探伤中的应用研究[J].计算机技术与发展,2009,(08):216.
 ZHANG Jia-dong,ZHANG Qiang,HUO Kai.Study on Application of Image Processing in Bearing Fluorescent Magnetic Detection[J].,2009,(05):216.
[5]王文豪 张亚红 朱全银 单劲松.QR Code二维条形码的图像识别[J].计算机技术与发展,2009,(10):123.
 WANG Wen-hao,ZHANG Ya-hong,ZHU Quan-yin,et al.Image Recognition in 2 - D Bar Code Based on QR Code[J].,2009,(05):123.
[6]李孟歆 吴成东.粗糙集理论在图像处理中的应用[J].计算机技术与发展,2009,(03):208.
 LI Meng-xin,WU Cheng-dong.Rough Set Theory and Its Applications in Image Processing[J].,2009,(05):208.
[7]武彬.一种离焦模糊图像的复原方法[J].计算机技术与发展,2008,(01):74.
 WU Bin.A Method of Defocus Blurred Image Restoration[J].,2008,(05):74.
[8]蒋恩松 肖辉军 孙刘杰 熊清廉.基于机器视觉的套印误差自动检测系统设计[J].计算机技术与发展,2008,(07):173.
 JIANG En-song,XIAO Hui-jun,SUN Liu-jie,et al.Design of Automatic Detecting Printing Registration Deviation System Based on Machine Vision[J].,2008,(05):173.
[9]汪继文 林胜华 沈玉峰 邱剑锋.一种基于各向异性扩散的图像处理方法[J].计算机技术与发展,2008,(08):98.
 WANG Ji-wen,LIN Sheng-hua,SHEN Yu-feng,et al.An Approach for Image Restoration Based on Anisotropic Diffusion[J].,2008,(05):98.
[10]余志强 戎蒙恬 袁丹寿.一种用单端口SRAM构成的FIFO的ASIC设计[J].计算机技术与发展,2008,(09):159.
 YU Zhi-qiang,RONG Meng-tian,YUAN Dan-shou.ASIC Design of an FIFO Involving Single Port SRAM[J].,2008,(05):159.

更新日期/Last Update: 1900-01-01