[1]侯建,鄂旭,夏齐,等.移动机器人立体视觉高精度标定技术[J].计算机技术与发展,2014,24(02):92-95.
 HOU Jian[],E Xu[],XIA Qi[],et al.A High-accuracy Calibration Technique of Stereo Vision for Mobile Robot[J].,2014,24(02):92-95.
点击复制

移动机器人立体视觉高精度标定技术()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年02期
页码:
92-95
栏目:
智能、算法、系统工程
出版日期:
2014-02-28

文章信息/Info

Title:
A High-accuracy Calibration Technique of Stereo Vision for Mobile Robot
文章编号:
1673-629X(2014)02-0092-04
作者:
侯建1鄂旭1夏齐2齐乃明2
1.渤海大学 信息科学与技术学院;2.哈尔滨工业大学 航天工程系
Author(s):
HOU Jian[1]E Xu[1]XIA Qi[2]QI Nai-ming[2]
关键词:
摄像机标定最小二乘法闭式解
Keywords:
camera calibrationleast square methodclosed-form solution
分类号:
TP242.6
文献标志码:
A
摘要:
摄像机标定是移动机器人立体视觉的一个关键步骤,标定精度直接影响到障碍检测和路径规划的精度。在前人研究的基础上,提出了一种迭代方式的摄像机标定算法。算法将摄像机参数分为畸变参数和非畸变参数两类,每次迭代中固定一类参数来求解另一类参数,最终得到优化解。通过合理组织参数求解次序,迭代的每一步都可以通过最小二乘法得到闭式解,从而简化了计算。算法可以方便地进行扩展以包含不同类型的畸变参数,而不会增加算法的复杂度。实验结果表明此算法可以有效提高标定精度,可用于移动机器人的视觉系统。
Abstract:
Camera calibration is a key step in stereo vision for mobile robot,the calibration accuracy affects directly the precision of barrier detection and path planning. A camera calibration technique of iterative manner is presented on the basis of previous research. The camera parameters are divided into two categories,distortion and non-distortion parameters,fixed one type parameters in each iteration to solve the other parameters,obtaining the final optimal. Through the reasonable organization of the parameters order solving,every step of the it-eration can acquire closed-form solution by least square method,which simplifies the calculation. The algorithm can be easily extended to include different types of distortion parameters,without increasing the complexity of the algorithm. Experiments validate the effectiveness of this technique in improving calibration precision.

相似文献/References:

[1]黄艳 赵越.3D靶标的摄像机三步标定算法与实现[J].计算机技术与发展,2010,(01):135.
 HUANG Yan,ZHAO Yue.Algorithm and Realization of Three-step Camera Calibration Based on 3D-Target[J].,2010,(02):135.
[2]曾劲涛 崔志明 陈建明.一种新的软件可靠性模型参数估计方法[J].计算机技术与发展,2008,(07):209.
 ZENG Jin-tao,CUI Zhi-ming,CHEN Jian-ming.A New Method on Parameters Estimation of a Software Reliabilty Model[J].,2008,(02):209.
[3]张霞 葛芦生.图像中心点预标定方法研究与应用[J].计算机技术与发展,2007,(03):44.
 ZHANG Xia,GE Lu-sheng.Application and Research on Pre - Calibration of Image Center[J].,2007,(02):44.
[4]张铖伟 王彪 徐贵力.摄像机标定方法研究[J].计算机技术与发展,2010,(11):174.
 ZHANG Cheng-wei,WANG Biao,XU Gui-li.A Study on Classification of Camera Calibration Methods[J].,2010,(02):174.
[5]张俭鸽 李颖颖.基于多元线性回归预测模型的sensor态势研究[J].计算机技术与发展,2011,(09):229.
 ZHANG Jian-ge,LI Ying-ying.Research of Sensor Situation Based on Multiple Linear Regression Forecast Model[J].,2011,(02):229.
[6]宫正 刘晓燕.时间序列短期趋势信号模型研究[J].计算机技术与发展,2011,(12):105.
 GONG Zheng,LIU Xiao-yan.Study on Time Series of Short-Term Trend Signal Model[J].,2011,(02):105.
[7]王万国,王仕荣,徐正飞[],等.基于边界的最小二乘椭圆拟合改进算法[J].计算机技术与发展,2013,(04):67.
 WANG Wan-guo,WANG Shi-rong,XU Zheng-fei,et al.Optimal Ellipse Fitting Algorithm of Least Square Principle Based on Boundary[J].,2013,(02):67.
[8]李欣,董建园.单目视觉测距在移动机器人的应用[J].计算机技术与发展,2013,(11):247.
 LI Xin,DONG Jian-yuan.Application of Monocular Vision Measurement in Mobile Robot[J].,2013,(02):247.
[9]肖秦琨,罗丹,肖秦汉.基于多视角视频的运动重建[J].计算机技术与发展,2014,24(02):84.
 XIAO Qin-kun[],LUO Dan[],XIAO Qin-han[].Motion Reconstruction Based on Multi-view Video[J].,2014,24(02):84.
[10]蒋中强,胡栋. 一种有效的基于消失点的摄像机自标定方法[J].计算机技术与发展,2014,24(09):54.
 JIANG Zhong-qiang,HU Dong. An Effective Camera Self-calibration Method Based on Vanishing Points[J].,2014,24(02):54.

更新日期/Last Update: 1900-01-01