[1]史学军,方金鑫,于舒娟.基于全局人工鱼群算法的盲均衡[J].计算机技术与发展,2013,(05):75-78.
 SHI Xue-jun,FANG Jin-xin,YU Shu-juan.Blind Equalization Based on Global Artificial Fish Swarm Algorithm[J].,2013,(05):75-78.
点击复制

基于全局人工鱼群算法的盲均衡()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年05期
页码:
75-78
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Blind Equalization Based on Global Artificial Fish Swarm Algorithm
文章编号:
1673-629X(2013)05-0075-04
作者:
史学军方金鑫于舒娟
南京邮电大学 电子科学与工程学院
Author(s):
SHI Xue-junFANG Jin-xinYU Shu-juan
关键词:
盲均衡人工鱼群算法恒模算法代价函数适应值
Keywords:
blind equalizationartificial fish swarm algorithmconstant modulus algorithmcost functionfitness value
文献标志码:
A
摘要:
针对当前盲均衡技术中主要采用的梯度搜索法存在的收敛到局部极小值点问题,提出了一种基于全局人工鱼群算法的盲均衡新算法.基于全局人工鱼群算法的寻优精度高、收敛速度快以及克服局部极值能力强的优点,文中将人工鱼群算法应用于盲均衡算法中,以文献中改进恒模算法的代价函数作为适应值,将均衡器系数作为人工鱼的位置向量,通过算法搜索寻优获得最佳的均衡器系数.通过Matlab7.0实验仿真,结果表明文中提出的算法相对文献中算法具有收敛速度快、码间干扰少的优点
Abstract:
A new blind equalization algorithm based on global artificial fish swarm algorithm (AFSA) is proposed to solve the problem of convergence to local minima in gradient searching method in current blind equalization technologies. Based on some advantages of AF-SA,like high precision of positioning advantage,fast convergence speed and strong capability of overcome local extremum,applies AFSA into blind equalization algorithm and tries to find the optimal equalizer coefficient by searching the optimal in the algorithm using the cost function of modified constant modulus algorithm as fitness value and using coefficient of equalizer as position vector of artificial fish. The experiment results simulated with Matlab 7. 0 shows that this algorithm is an efficient blind equalization algorithm which can increase the convergence speed,reduce inter-symbol interference

相似文献/References:

[1]王会颖 章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,(03):84.
 WANG Hui-ying,ZHANG Yi-gang.An Improved Artificial Fish- Swarm Algorithm of Solving Clustering Analysis Problem[J].,2010,(05):84.
[2]古明家 宣士斌 廉侃超 李永胜.基于蚁群和人工鱼群算法融合的QoS路由算法[J].计算机技术与发展,2009,(07):145.
 GU Ming-jia,XUAN Shi-bin,LIAN Kan-chao,et al.QoS Routing Algorithm Based on Combination of Modified Ant Colony Algorithm and Artificial Fish Swarm Algorithm[J].,2009,(05):145.
[3]王京 于舒娟.模拟退火混沌粒子群算法的盲检测[J].计算机技术与发展,2011,(01):35.
 WANG Jing,YU Shu-juan.Blind Detection Based on Simulated Annealing Chaotic Particle Swarm Optimization[J].,2011,(05):35.
[4]汪金伟 于舒娟 张昀.基于改进蚁群优化的盲均衡算法研究[J].计算机技术与发展,2012,(04):141.
 WANG Jin-wei,YU Shu-juan,ZHANG Yun.Research of Blind Equalization Algorithm Based on Improved Ant Colony Optimization[J].,2012,(05):141.
[5]蔡思捷 于舒娟 张昀.差分算法在盲均衡中的应用与研究[J].计算机技术与发展,2012,(06):64.
 CAI Si-jie,YU Shu-juan,ZHANG Yun.Application and Research of Differential Evolution in Blind Equalization[J].,2012,(05):64.
[6]刘卫平,于舒娟,张昀.远程医疗系统中一种自适应盲算法研究[J].计算机技术与发展,2013,(05):47.
 LIU Wei-ping,YU Shu-juan,ZHANG Yun.Research on an Adaptive Blind Algorithm in Telemedicine System[J].,2013,(05):47.
[7]张振洲,于舒娟,张昀.基于无线传感器网络虚拟MIMO系统盲均衡[J].计算机技术与发展,2014,24(03):31.
 ZHANG Zhen-zhou,YU Shu-juan,ZHANG Yun.System Blind Equalization of Virtual MIMO Based on WSN[J].,2014,24(05):31.
[8]刘晓丽,熊良鹏. 改进的人工鱼群算法在机器人控制中的应用[J].计算机技术与发展,2015,25(05):200.
 LIU Xiao-li,XIONG Liang-peng. Application of Robot Control Using Improved Artificial Fish Swarm Algorithm[J].,2015,25(05):200.
[9]彭培真,俞毅,王兆嘉,等. 基于单纯形的改进全局人工鱼群优化算法[J].计算机技术与发展,2015,25(08):75.
 PENG Pei-zhen,YU Yi,WANG Zhao-jia,et al. Improved Global Artificial Fish Swarm Algorithm Based on Simplex Method[J].,2015,25(05):75.
[10]汪晨,张玲华.基于人工鱼群算法的改进质心定位算法[J].计算机技术与发展,2018,28(05):103.[doi:10.3969/ j. issn.1673-629X.2018.05.024]
 WANG Chen,ZHANG Ling-hua.An Improved Centroid Localization Algorithm Based on Optimized Artificial Fish Swarm Algorithm[J].,2018,28(05):103.[doi:10.3969/ j. issn.1673-629X.2018.05.024]

更新日期/Last Update: 1900-01-01