[1]祖哲 毕贵红 刘力 郝娟.基于小波神经网络的电力系统短期负荷预测模型研究[J].计算机技术与发展,2012,(10):237-241.
 ZU Zhe,BI Gui-hong,LIU Li,et al.Research on Power System Short-term Load Forecast Model Based on Wavelet Neural Network[J].,2012,(10):237-241.
点击复制

基于小波神经网络的电力系统短期负荷预测模型研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年10期
页码:
237-241
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Power System Short-term Load Forecast Model Based on Wavelet Neural Network
文章编号:
1673-629X(2012)10-0237-05
作者:
祖哲1 毕贵红1 刘力1 郝娟2
[1]昆明理工大学电力工程学院[2]山西晋中供电分公司
Author(s):
ZU Zhe BI Gui-hong LIU Li HAO Juan
[1]Faculty of Electric Power Engineering, Kunming Univ. of Science and Tech[2]Shanxi Jinzhong Power Supply Company
关键词:
负荷预测小波神经网络BP神经网络
Keywords:
load forecast wavelet neural network BP neural network
分类号:
TP39
文献标志码:
A
摘要:
实现了BP神经网络电力负荷预测模型和小波神经网络电力负荷预测模型。通过对两种神经网络的算法进行理论分析以及两种模型的预测结果比较发现,小波神经网络在神经网络节点数目相同的情况下,小波神经网络比BP神经网络具有更高的预测精度。小波神经网络是一种建立在小波理论基础上的一种新型前馈神经网络,具有许多优良特性。文中所指的小波神经网络的优点,例如所需网络节点少和预测精度高,已经在电力负荷预测中得到验证。表明小波神经网络模型预测精度高,自适应性好,收敛速度也明显快
Abstract:
Achieve a BP neural network load forecasting model and wavelet neural network load forecasting model. By analyzing two nanral network algorithms and comparing two model forecasting result,it shows that when they have same number of network node, wavelet neural network is better than BP network in forecast accuracy. Wavelet neural network is a new feedforward neural network based on wavelet theory with many advantage. It points out that the advantages of WNN, such as requiring less network nodes and achieving accurate forecasting,are validated in power load forecasting research. Wavelet neural network model shows that the prediction accuracy is high, the adaptability is good, the convergence speed is significantly fast

相似文献/References:

[1]耿波 仲红 徐杰 闫娜娜.用关联分析法对负荷预测结果进行二次处理[J].计算机技术与发展,2008,(04):171.
 GENG Bo,ZHONG Hong,XU Jie,et al.Using Correlation Analysis to Treat Load Forecasting Results[J].,2008,(10):171.
[2]赵兵.小波变换阈值降噪在电力负荷管理终端中的应用[J].计算机技术与发展,2009,(07):206.
 ZHAO Bing.Application of Wavelet Transform Threshold Noise Reduction in Load Management Terminal[J].,2009,(10):206.
[3]章曙光 蔡庆生.电力负荷预测的CBR中权重向量的选取模型[J].计算机技术与发展,2007,(06):197.
 ZHANG Shu-guang,CAI Qing-sheng.Model of Choosing Weight Vector in CBR for Forecasting Electric Power Load[J].,2007,(10):197.
[4]章曙光.基于CBR的电力负荷预测系统的研究与实现[J].计算机技术与发展,2006,(05):234.
 ZHANG Shu-guang.Research and Realization of Power Load Forecasting System Based on CBR[J].,2006,(10):234.
[5]杨颖 陈德华.基于小波神经网络的时间序列流数据的研究[J].计算机技术与发展,2006,(06):193.
 YANG Ying,CHEN De-hua.Research for Model of Time Series Streaming Based on Wavelet Neural Network[J].,2006,(10):193.
[6]丁华福 柴琳.基于Bagging算法和遗传BP神经网络的负荷预测[J].计算机技术与发展,2011,(05):107.
 DING Hua-fu,CHAI Lin.Load Forecasting Based on Bagging Method and GABP Neural Network[J].,2011,(10):107.
[7]吴义纯 李瑞君 李淼.基于MATLAB的县网中长期负荷预测的实现与应用[J].计算机技术与发展,2012,(12):183.
 WU Yi-chun LI Rui-jun,LI Miao.Realization and Application of Medium and Long Term Load Forecasting Method for County Grid Based on MATLAB[J].,2012,(10):183.
[8]成云,成孝刚,谈苗苗,等. 基于ARIMA和小波神经网络组合模型的交通流预测[J].计算机技术与发展,2017,27(01):169.
 CHENG Yun,CHENG Xiao-gang,TAN Miao-miao,et al. Traffic Flow Prediction Based on Hybrid Model of ARIMA and WNN[J].,2017,27(10):169.
[9]余 洋,万定生.基于 WNN-SVM 的水文时间序列预测方法研究[J].计算机技术与发展,2019,29(09):13.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 003]
 YU Yang,WAN Ding-sheng.Research on Hydrological Time Series Prediction Method Based on WNN-SVM[J].,2019,29(10):13.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 003]
[10]张 然,潘芷涵,朱 亮,等.基于 PCA 与 WNN 的网络安全态势要素提取方法[J].计算机技术与发展,2023,33(07):119.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 018]
 ZHANG Ran,PAN Zhi-han,ZHU Liang,et al.An Extraction Method of Network Security Situation Elements Based onPCA and WNN[J].,2023,33(10):119.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 018]

备注/Memo

备注/Memo:
云南省自然科学基金项目(2009CD028);昆明理工大学科学研究基金(201001)祖哲(1985-),男,河北秦皇岛人,硕士研究生,研究方向为电能质量信号处理;毕贵红,博士,教授,硕士生导师,研究方向为信号处理与模式识别
更新日期/Last Update: 1900-01-01