[1]陆培军 吴斌 黄海斌.改进关联规则挖掘算法在入侵检测中的应用[J].计算机技术与发展,2011,(11):231-235.
 LU Pei-jun,WU Bin,HUANG Hai-bin.Improved Association Rule Mining Algorithm and Its Applications in Intrusion Detection[J].,2011,(11):231-235.
点击复制

改进关联规则挖掘算法在入侵检测中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年11期
页码:
231-235
栏目:
安全与防范
出版日期:
1900-01-01

文章信息/Info

Title:
Improved Association Rule Mining Algorithm and Its Applications in Intrusion Detection
文章编号:
1673-629X(2011)11-0231-05
作者:
陆培军1 吴斌2 黄海斌1
[1]南通大学计算机科学与技术学院[2]南通职业大学
Author(s):
LU Pei-jun WU Bin HUANG Hai-bin
[1]School of Computer Science and Technology Engineering, Nantong University[2]Nantong Vocational College
关键词:
关联规则入侵检测CP-树
Keywords:
association role intrusion detection CP-Tree
分类号:
TP312
文献标志码:
A
摘要:
在关联规则挖掘算法中基于FP-树的FP—Growth挖掘算法在挖掘频繁模式的过程中需要递归产生大量的条件FP-树,效率不高,FP—Growth算法不太适合应用到入侵中多种要索交叉的关联关系的挖掘中。因为人侵的方法及要素很多,在检测中需要对入侵样本进行条件约柬下的定量分析。文中分析入侵检测的特点,提出基于条件频繁项的频繁模式树CP-Tree以及在此树挖掘的改进算法MineCPT。分析与实验结果表明,MineCPT算法在效率和可靠性等方面比FP-Growth算法更优越,在入侵检测中取得了较好的效果
Abstract:
The FP-Growth algorithm based on FP-Tree needs to create a large number of conditional FP-Trees recusively in the process of mining frequent patterns. It is not efficient and not good to apply in intrusion detection, in which the association rules mining include many elements. Because the intrusion includes many methods and elements, must quantitatively analyse intrusion samples. It analyzes the features of intrusion detection, proposed a new frequent pattern tree CP-Tree based on conditional frequent-items and the improved algo- rithms MineCPT which directly mines in the tree. Theoretical analysis and experimental results show that the MineCPT algorithm is superior to FP-Growth algorithm in memory occupancy and reliability. It has achieved better results in the field of intrusion detection

相似文献/References:

[1]马志远,曹宝香.改进的决策树算法在入侵检测中的应用[J].计算机技术与发展,2014,24(01):151.
 MA Zhi-yuan,CAO Bao-xiang.Application of Improved Decision Tree Algorithm in Intrusion Detection System[J].,2014,24(11):151.
[2]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(11):105.
[3]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(11):84.
[4]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(11):148.
[5]林英 张雁 欧阳佳.日志检测技术在计算机取证中的应用[J].计算机技术与发展,2010,(06):254.
 LIN Ying,ZHANG Yan,OU Yang-jia.Application of Log Testing Technology in Computer Forensics[J].,2010,(11):254.
[6]耿波 仲红 徐杰 闫娜娜.用关联分析法对负荷预测结果进行二次处理[J].计算机技术与发展,2008,(04):171.
 GENG Bo,ZHONG Hong,XU Jie,et al.Using Correlation Analysis to Treat Load Forecasting Results[J].,2008,(11):171.
[7]文拯 梁建武 陈英.关联规则算法的研究[J].计算机技术与发展,2009,(05):56.
 WEN Zheng,LIANG Jian-wu,CHEN Ying.Research of Association Rules Algorithm[J].,2009,(11):56.
[8]李钦 余谅.基于免疫遗传算法的网格入侵检测模型[J].计算机技术与发展,2009,(05):162.
 LI Qin,YU Liang.Grid Intrusion Detection Model Based on Immune Genetic Algorithm[J].,2009,(11):162.
[9]黄世权.网络存储安全分析[J].计算机技术与发展,2009,(05):170.
 HUANG Shi-quan.Analysis of Network Storage's Safety[J].,2009,(11):170.
[10]王晓宇 秦锋 程泽凯 邹洪侠.关联规则挖掘技术的研究与应用[J].计算机技术与发展,2009,(05):220.
 WANG Xiao-yu,QIN Feng,CHENG Ze-kai,et al.Investigation and Application of Association Rules Mining[J].,2009,(11):220.
[11]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(11):143.
[12]孙志强.基于FP—Growth的入侵检测研究[J].计算机技术与发展,2006,(12):233.
 SUN Zhi-qiang.A Study of Intrusion Detection Based on Algorithm of FP - Growth[J].,2006,(11):233.
[13]杨德璋 李雷 申方成.快速多规则约束关联算法的入侵检测研究[J].计算机技术与发展,2010,(12):173.
 YANG De-zhang,LI Lei,SHEN Fang-cheng.Intrusion Detection Technology Research Based on Fast Multi-association Mining Algorithm[J].,2010,(11):173.
[14]周丽 王小玲.基于网络审计日志关联规则挖掘的改进[J].计算机技术与发展,2011,(06):150.
 ZHOU Li,WANG Xiao-ling.Improved Algorithm for Association Rules Mining Based on Network Audit Record[J].,2011,(11):150.

备注/Memo

备注/Memo:
江苏省高校自然基金项目(10KJBSl0022);南通市科技计划项目(K2010065)陆培军(1975-),男,江苏南通人,讲师,硕士,主要研究领域为人工智能、文本挖掘;吴斌,硕士,副教授,主要研究领域为搜索引擎、人工智能
更新日期/Last Update: 1900-01-01