[1]马志远,曹宝香.改进的决策树算法在入侵检测中的应用[J].计算机技术与发展,2014,24(01):151-154.
 MA Zhi-yuan,CAO Bao-xiang.Application of Improved Decision Tree Algorithm in Intrusion Detection System[J].,2014,24(01):151-154.
点击复制

改进的决策树算法在入侵检测中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年01期
页码:
151-154
栏目:
安全与防范
出版日期:
2014-01-31

文章信息/Info

Title:
Application of Improved Decision Tree Algorithm in Intrusion Detection System
文章编号:
1673-629X(2014)01-0151-04
作者:
马志远曹宝香
曲阜师范大学 计算机科学学院
Author(s):
MA Zhi-yuanCAO Bao-xiang
关键词:
入侵检测决策树算法入侵行为
Keywords:
intrusion detectiondecision tree algorithmintrusion behaviors
分类号:
TP301.6
文献标志码:
A
摘要:
为了提高入侵检测系统对入侵行为的速度和检测率,需要引入更好的算法或者对现有的算法进行改进。入侵检测要求能够快速准确地检测出各种入侵行为,因此对算法的执行效率问题要求较高。文中介绍了决策树中的两个经典算法:ID3算法和C4.5算法,分析了它们存在的问题以及寻找如何将改进的决策树算法应用在入侵检测中,并把它们进行了适当的改进以得到更好的效果。通过实验仿真验证了改进的这两种算法在入侵检测系统中对于发现入侵行为能够达到预期的结果。
Abstract:
In order to improve the speed and detection rate of the intrusion detection system for detecting the intrusion,need to introduce better algorithms or improve the existing algorithms. Intrusion detection requires the ability to quickly and accurately detect a variety of in-trusion,so the efficiency of the algorithm requires the higher. It describes two classical algorithms of the decision-making tree:ID3 algo-rithm and C4. 5 algorithm,and analyzes their problems and ways to apply them to intrusion detection. Make some appropriate improve-ments to them in order to get better results. The experimental simulation verifies that these two improved algorithms can achieve the ex-pected results in discovering the intrusion in the intrusion detection system.

相似文献/References:

[1]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(01):143.
[2]孙名松 邸明星 王湛昱.多决策树算法在P2P网络流量检测中的应用[J].计算机技术与发展,2010,(06):126.
 SUN Ming-song,DI Ming-xing,WANG Zhan-yu.Application of Decision Tree Algorithm in Traffic Detection of P2P Network[J].,2010,(01):126.
[3]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(01):148.
[4]林英 张雁 欧阳佳.日志检测技术在计算机取证中的应用[J].计算机技术与发展,2010,(06):254.
 LIN Ying,ZHANG Yan,OU Yang-jia.Application of Log Testing Technology in Computer Forensics[J].,2010,(01):254.
[5]李钦 余谅.基于免疫遗传算法的网格入侵检测模型[J].计算机技术与发展,2009,(05):162.
 LI Qin,YU Liang.Grid Intrusion Detection Model Based on Immune Genetic Algorithm[J].,2009,(01):162.
[6]黄世权.网络存储安全分析[J].计算机技术与发展,2009,(05):170.
 HUANG Shi-quan.Analysis of Network Storage's Safety[J].,2009,(01):170.
[7]李睿 肖维民.基于孤立点挖掘的异常检测研究[J].计算机技术与发展,2009,(06):168.
 LI Rui,XIAO Wei-min.Research on Anomaly Intrusion Detection Based on Outlier Mining[J].,2009,(01):168.
[8]胡琼凯 黄建华.基于协议分析和决策树的入侵检测研究[J].计算机技术与发展,2009,(06):179.
 HU Oiong-kai,HUANG Jian-hua.Intrusion Detection Based on Protocol Analysis and Decision Tree[J].,2009,(01):179.
[9]汪世义.基于优化支持向量机的网络入侵检测技术研究[J].计算机技术与发展,2009,(07):177.
 WANG Shi-yi.Network Intrusion Detection Based on Improved Support Vector Machine[J].,2009,(01):177.
[10]薛俊 陈行 陶军.一种基于神经网络的入侵检测技术[J].计算机技术与发展,2009,(08):148.
 XUE Jun,CHEN Hang,TAO Jun.Technology of Intrusion Detection Based on Neural Network[J].,2009,(01):148.

更新日期/Last Update: 1900-01-01