[1]刘永 王新华 邢长明[] 王硕.云计算环境下基于蚁群优化算法的资源调度策略[J].计算机技术与发展,2011,(09):19-23.
 LIU Yong,WANG Xin-hua,XING Chang-ming,et al.Resources Scheduling Strategy Based on Ant Colony Optimization Algorithms in Cloud Computing[J].,2011,(09):19-23.
点击复制

云计算环境下基于蚁群优化算法的资源调度策略()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年09期
页码:
19-23
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Resources Scheduling Strategy Based on Ant Colony Optimization Algorithms in Cloud Computing
文章编号:
1673-629X(2011)09-0019-05
作者:
刘永1 王新华12 邢长明[3] 王硕1
[1]山东师范大学信息科学与工程学院[2]山东省分布式计算机软件新技术重点实验室[3]山东财政学院继续教育学院
Author(s):
LIU YongWANG Xin-huaXING Chang-mingWANG Shuo
[1]Dept.of Information Science and Engineering,Shandong Normal University[2]Shandong Provincial Key Laboratory for Distributed Computer Soft Novel Technology[3]School of Further Education,Shandong University of Finance
关键词:
资源调度蚁群算法
Keywords:
cloud resources scheduling ant colony algorithm
分类号:
TP31
文献标志码:
A
摘要:
针对当前云计算环境中节点规模巨大,单个节点资源配置较低,寻找有效计算资源效率不高的缺点,文中在Google公司的Map/Reduce框架上提出了两个基于蚁群优化的资源调度策略ACO1和ACO2,并在这两个资源调度策略中引入双向蚂蚁机制。在该双向蚂蚁机制中蚂蚁通过相互交流,能够快速地发现合适的虚拟机资源,从而使得Master节点能够快速地为用户任务分配虚拟机。实验结果表明这两个利用了双向蚂蚁机制的资源调度策略显著减少了为用户任务寻找虚拟机的时间,从而使得用户任务能够更快地获得虚拟机,保证用户作业能够按时完成
Abstract:
It presents two resources scheduling algorithms which are named ACO1 and ACO2 respectively for the cloud computing because of the disadvantage that the scale of nodes is huge,the configuration of nodes is not high and the efficiency of finding nodes is low.The two resources scheduling algorithms are based on ant colony algorithm and Map/Reduce frame which belongs to Google's company.And two-way ant mechanism is introduced into the two resources scheduling algorithms.In the mechanism the ants can find the virtual machines which perform the tasks fast by the communication of ants so that the Master node can assign the virtual machines to the tasks fast.The experimental result demonstrates that the time to find virtual machines which perform the tasks by ACO1 and ACO2 reduces observably,which advantage of the two-way ant mechanism so that it reduces the time to assign the virtual machines to the tasks and assures the users' job can be completed on time

相似文献/References:

[1]廖宁 刘建勋 王俊年.DPSO算法在服务网格资源调度中的应用[J].计算机技术与发展,2009,(08):104.
 LIAO Ning,LIU Jian-xun,WANG Jun-nian.Application of Discrete Particle Swarm Optimization Algorithm to Service Grid Resource Optimization Scheduling[J].,2009,(09):104.
[2]徐慧慧 石磊 陈信.网格资源调度算法研究[J].计算机技术与发展,2009,(09):76.
 XU Hui-hui,SHI Lei,CHEN Xin.Research on Grid Resource Scheduling Algorithm[J].,2009,(09):76.
[3]陈小飞 徐宏炳.基于网格的并行FFT计算研究[J].计算机技术与发展,2008,(03):67.
 CHEN Xiao-fei,XU Hong-bing.Research of Parallel FFT Computing Based on Grid[J].,2008,(09):67.
[4]储凡静 刘方爱.一种基于XML的个性化的资源需求描述机制[J].计算机技术与发展,2008,(06):67.
 CHU Fan-jing,LIU Fang-ai.Personal Resource Requirement Description Mechanism Based on XML[J].,2008,(09):67.
[5]陈业斌.关于天空动态仿真技术研究与实现[J].计算机技术与发展,2008,(06):171.
 CHEN Ye-bin.Study and Implementation about Dynamic Sky Simulation[J].,2008,(09):171.
[6]姜姗 刘方爱.基于多任务拍卖的资源调度算法[J].计算机技术与发展,2006,(12):86.
 JIANG Shan,LIU Fang-ai.Resource Scheduling Algorithm Based on Multi- Job Auction[J].,2006,(09):86.
[7]舒文迪 解福.基于信誉度效益最优的网格调度算法研究[J].计算机技术与发展,2011,(01):133.
 SHU Wen-di,XIE Fu.Research of Grid Dispatch Algorithm Based on Optimal Credit Benefit[J].,2011,(09):133.
[8]吕克 徐夫田 舒文迪.基于信誉度的网格资源质量优化[J].计算机技术与发展,2011,(06):104.
 L Ke,XU Fu-tian,SHU Wen-di.Quality Optimization of Grid Resources Based on Credit[J].,2011,(09):104.
[9]史金龙 白素琴 施金宛 袁辰辰.基于CLG光流算法的云的运动分析与研究[J].计算机技术与发展,2011,(12):135.
 SHI Jin-long,BAI Su-qin,SHI Jin-wan,et al.Analysis and Research of Cloud Motion Based on CLG Optical Flow[J].,2011,(09):135.
[10]邢静宇[],张立臣[]. 基于能量控制与资源调度的信息物理系统建模[J].计算机技术与发展,2014,24(07):120.
 XING Jing-yu[],ZHANG Li-chen[]. Cyber Physical System Modeling Based on Energy Control and Resource Scheduling[J].,2014,24(09):120.

备注/Memo

备注/Memo:
山东省优秀中青年科学家科研奖励基金(BS2010DX032)刘永(1985-),男,山东济南人,硕士研究生,研究方向为云计算、网格计算;王新华,博士,教授,研究方向为云计算、车载网络;邢长明,博士,研究方向为网格计算;王硕,硕士研究生,研究方向为云计算、车载网络
更新日期/Last Update: 1900-01-01