[1]王峻 周孟然.一种基于MDL度量的选择性扩展贝叶斯分类器[J].计算机技术与发展,2007,(07):35-37.
 WANG Jun,ZHOU Meng-ran.A Selective Augmented Naive Bayesian Classifier Based on MDL Score[J].,2007,(07):35-37.
点击复制

一种基于MDL度量的选择性扩展贝叶斯分类器()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年07期
页码:
35-37
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
A Selective Augmented Naive Bayesian Classifier Based on MDL Score
文章编号:
1673-629X(2007)07-0035-03
作者:
王峻1 周孟然2
[1]淮南师范学院[2]安徽理工大学
Author(s):
WANG Jun ZHOU Meng-ran
[1]Huainan Normal University[2]Anhui University of Science and Technology
关键词:
朴素贝叶斯贝叶斯网络MDL度量
Keywords:
naive BayesBayesian networkMDLscore
分类号:
TP181
文献标志码:
A
摘要:
朴素贝叶斯分类器是一种简单而高效的分类器,但它的条件独立性假设使其无法表示属性问的依赖关系。TAN分类器按照一定的结构限制,通过添加扩展弧的方式扩展朴素贝叶斯分类器的结构。在TAN分类器中,类变量是每一个属性变量的父结点,但有些属性的存在降低了它分类的正确率。文中提出一种基于MDL度量的选择性扩展贝叶斯分类器(SANC),通过MDL度量,删除影响分类性能的属性变量和扩展弧。实验结果表明,与NBC和TANC相比,SANC具有较高的分类正确率
Abstract:
Naive Bayesian classifier is a simple and effective classifier, but its conditional independence assumption makes it unable to express the dependence among features. TAN classifier extends the structure of Naive Bayes classifier by adding augmenting arcs that obey certain structural restrictions. In TAN classifier, all features are constrained to have the class variable as a parent, but sczne features degrade its classification accuracy. The present paper presents SANC(A Selective Augmented Naive Bayesian Classifier based on MDL score) that removes features and augmenting arcs which affect the performance of classification by MDL score. Compared with NBC and TANC, experimental results show SANC has higher accuracy

相似文献/References:

[1]赵敏 倪志伟 刘斌.K—means与朴素贝叶斯在商务智能中的应用[J].计算机技术与发展,2010,(04):179.
 ZHAO Min,NI Zhi-wei,LIU Bin.Application Research of K - Means Clustering and Naive Bayesian Algorithm in Business Intelligence[J].,2010,(07):179.
[2]宫义山 高媛媛.基于信息融合的诊断贝叶斯网络研究[J].计算机技术与发展,2009,(06):106.
 GONG Yi-shan,GAO Yuan-yuan.Diagnostic Bayesian Networks Research Based on Information Fusion[J].,2009,(07):106.
[3]奚海荣 马文丽 梁斌.基于贝叶斯网络SP算法的改进研究[J].计算机技术与发展,2009,(03):155.
 XI Hai-rong,MA Wen-li,LIANG Bin.Improvement of SP Algorithm Based on Bayesian Networks[J].,2009,(07):155.
[4]胡为成 胡学钢.基于遗传算法的朴素贝叶斯分类[J].计算机技术与发展,2007,(01):30.
 HU Wei-cheng,HU Xue-gang.Naive Bayes Classification Based on Genetic Algorithms[J].,2007,(07):30.
[5]程泽凯.基于TAN结构的启发式贝叶斯网络结构学习算法[J].计算机技术与发展,2007,(08):61.
 CHENG Ze-kai.BN Structure Learning Heuristic Algorithm Based on TAN Structure[J].,2007,(07):61.
[6]翟素兰 郑诚.用于入侵检测的基于粗糙集的贝叶斯分类器[J].计算机技术与发展,2006,(01):226.
 ZHAI Su-lan,ZHENG Cheng.Bayes Classifier Based on Rough Set Used in Intrusion Detection[J].,2006,(07):226.
[7]王峻.一种基于强属性限定的贝叶斯分类模型[J].计算机技术与发展,2007,(02):205.
 WANG Jun.A Restricted Bayesian Classification Model Based on Strong Attributes[J].,2007,(07):205.
[8]蒋望东 林士敏 鲁明羽[].基于BIC测度和混合遗传算法的BNC结构学习[J].计算机技术与发展,2007,(03):84.
 JIANG Wang-dong,LIN Shi-min,LU Ming-yu.Structure Learning of BNC Based on BIC and Hybrid Genetic Algorithms[J].,2007,(07):84.
[9]孙笑微 赵大宇 李晓毅 唐恒永.用于数据挖掘的TAN分类器的研究与应用[J].计算机技术与发展,2006,(11):140.
 suN Xiao-wei,ZHAO Da-yu,LI Xiao-yi,et al.Study and Application of TAN Classifier for Data Mining[J].,2006,(07):140.
[10]钟仕群 朱程荣 熊齐邦.一种基于贝叶斯网络的集成的故障定位模型[J].计算机技术与发展,2006,(12):13.
 ZHONG Shi-qun,ZHU Cheng-rong,XIONG Qi-bang.An Integrated Fault Localization Model Based on Bayesian Networks[J].,2006,(07):13.

备注/Memo

备注/Memo:
安徽省高等学校省级自然科学研究项目(KJ200713075)王峻(1967-),男,安徽淮南人,硕士,讲师,研究方向为数据挖掘;周孟然,博士,教授,研究方向为计算机控制
更新日期/Last Update: 1900-01-01