[1]王陈阳 周明全 耿国华.基于自适应背景模型运动目标检测[J].计算机技术与发展,2007,(04):21-23.
 WANG Chen-yang,ZHOU Ming-quan,GENG Guo-hua.Moving Object Detection Based on Adaptive Background Model[J].,2007,(04):21-23.
点击复制

基于自适应背景模型运动目标检测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年04期
页码:
21-23
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Moving Object Detection Based on Adaptive Background Model
文章编号:
1673-629X(2007)04-0021-03
作者:
王陈阳 周明全 耿国华
西北大学可视化研究所
Author(s):
WANG Chen-yang ZHOU Ming-quan GENG Guo-hua
Institute of Visualization Technology, Northwest University
关键词:
背景差分背景提取背景更新自适应背景模型运动目标检测
Keywords:
haekground subtraction background extract background update adaptive background model moving object detection
分类号:
TP391.3
文献标志码:
A
摘要:
随着城市化速度的加快,机动车日益普及,人们在享受机动车所带来的巨大便利的同时,也面临着交通拥挤的困扰。随着计算机硬件技术和计算机视觉技术的发展,基于计算机视觉的交通监控系统成为可能。从一个交通视频序列中识别出运动物体是许多交通监控系统应用系统的重要任务,针对该问题,提出了一种建立在对视频序列中的整个背景情景的统计描述基础上的运动目标的检测的有效方法,该方法能够适应变化的背景,具有较强的鲁棒性和较好的实时性
Abstract:
With the acceleration of urbanization, automobile becomes more and more popular and people are enjoying the convenience that offer; however, people are trapped in the bewilderment of traffic congestion. Along with the computer hardware technology and the computer vision technology development, a computer vision - based traffic monitoring system has become possible. The main task for most a computer vision - based traffic monitoring application system is to identify the moving objects form a video sequence. To solve this problem, authors present a new statistics description of the whole background scene based on the video sequence, establish an effective algorithm for moving object detection. This method can adapt to the changing background with high robusmess and excellent real time performance

相似文献/References:

[1]罗勤 曾致远 李波.桥墩安全监测系统中背景重建技术的研究[J].计算机技术与发展,2006,(06):23.
 LUO Qin,ZENG Zhi-yuan,LI Bo.Application of Video Surveillance Technology in Pier Safety Monitoring[J].,2006,(04):23.
[2]曙光 张超 蔡则苏.基于改进的混合高斯模型的目标检测方法[J].计算机技术与发展,2012,(07):60.
 SHU Guang,ZHANG Chao,CAI Ze-su.Target Detection Method Based on Improved Gaussian Mixture Model[J].,2012,(04):60.
[3]梁凤兰 秦川 施化吉.基于视频的交通流信息采集算法的研究[J].计算机技术与发展,2012,(10):221.
 LIANG Feng-lan,QIN Chuan,SHI Hua-ji.Research on Traffic Flow Information Collection Algorithm Based on Video[J].,2012,(04):221.
[4]杨惠 韩其睿.视频监控中运动目标检测的背景提取及更新[J].计算机技术与发展,2012,(12):80.
 YANG Hui,HAN Qi-rui.Background Extraction and Update for Moving Object Detection in Videos Monitoring[J].,2012,(04):80.
[5]朱超军,杨红雨,刘东辉,等.基于实时视频图像处理的车辆排队长度检测[J].计算机技术与发展,2014,24(04):45.
 ZHU Chao-jun,YANG Hong-yu,LIU Dong-hui,et al.Measurement of Vehicle Queue Length Based on Real-time Video Image Processing[J].,2014,24(04):45.
[6]吴国栋[,刘政怡[],王小帅[]. 基于OpenCV的视频目标检索[J].计算机技术与发展,2014,24(11):210.
 WU Guo-dong[],LIU Zheng-yi[],WANG Xiao-shuai[]. Video Object Retrieval Based on OpenCV[J].,2014,24(04):210.
[7]万盼盼,张轶. 一种改进的基于背景差分的运动目标检测方法[J].计算机技术与发展,2015,25(02):38.
 WAN Pan-pan,ZHANG Yi. An Improved Method for Moving Object Detection Based on Background Subtraction[J].,2015,25(04):38.
[8]高翔,朱婷婷,刘洋. 多摄像头系统的目标检测与跟踪方法研究[J].计算机技术与发展,2015,25(07):221.
 GAO Xiang,ZHU Ting-ting,LIU Yang. Research of Target Detection and Tracking Method for Multi-camera System[J].,2015,25(04):221.
[9]祝加祥[],胡鹏程[],何璇[],等. 基于滑动窗非负矩阵分解的运动目标检测方法[J].计算机技术与发展,2017,27(01):20.
 ZHU Jia-xiang[],HU Peng-cheng[],HE Xuan[],et al. Moving Target Detection Method Based on Non-negative Matrix Factorization of Sliding Window[J].,2017,27(04):20.
[10]何继燕,郜鲁涛,赵红波.一种封闭区域人数智能监控统计系统[J].计算机技术与发展,2019,29(02):212.[doi:10.3969/j.issn.1673-629X.2019.02.044]
 HE Jiyan,GAO Lutao,ZHAO Hongbo.An Intelligent Monitoring and Statistical System Based on Number of People in Closed Area[J].,2019,29(04):212.[doi:10.3969/j.issn.1673-629X.2019.02.044]

备注/Memo

备注/Memo:
王陈阳(1982-),男,陕西西安人,硕士研究生,研究方向为视频处理、数字图像处理;周明全,教授,博士生导师,研究方向为可视化研究;耿国华,教授,博士生导师,研究方向为可视化研究
更新日期/Last Update: 1900-01-01