[1]孙知信 焦琳 姜举良.混合二次网络流量异常状态模型研究[J].计算机技术与发展,2007,(03):153-155.
 SUN Zhi-xin,JIAO Lin,JIANG Ju-liang.Research on Mixed Quadratic Network Traffic Abnormal States Model[J].,2007,(03):153-155.
点击复制

混合二次网络流量异常状态模型研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年03期
页码:
153-155
栏目:
安全与防范
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Mixed Quadratic Network Traffic Abnormal States Model
文章编号:
1673-629X(2007)03-0153-03
作者:
孙知信 焦琳 姜举良
南京邮电大学计算机系
Author(s):
SUN Zhi-xinJIAO Lin JIANG Ju-liang
Dept. of Computer Sci. and Techn. , Nanjing University of Posts & Telecommunications
关键词:
分布式拒绝服务攻击入侵检测误检率漏检率
Keywords:
dlstributed denial of service intrusion detection false positive probabilityfalse negative probability
分类号:
TP393.08
文献标志码:
A
摘要:
提出了一种网络流量异常状态统计模型——混合二次网络状态模型MQNSM-G(DKS,DKKS,DAKS)。该模型从动态性原则以及降低误检率和漏检率思想出发.改进原有统计模型,建立了可以动态设定描述网络流量状态参数的加权统计模型。基于混合二次网络状态模型MQNSM~G(DKS,DKKS,DAKS)的入侵检测系统进一步证明了该模型可以更大程度上提高异常检测性能,降低其误检率和漏检率
Abstract:
A statistical raodel for detecting abnormal network traffic - mixed quadratic network states model MQNSM- G( DKS, DKKS, DAKS )is presented. Based on principles of developments and reducing FNP and FPP, this paper builds up a statistical model with wrights that can dynamically .set parameters of network traffic states, which improves on former statistical models. It has proved that performances of anomaly detection can be improved to a great degree and the FPP and FNP can be cut down prominently in an IDS based on the mixed quadratic network states model MQNSM - G( DKS, DKKS, DAKS).

相似文献/References:

[1]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(03):143.
[2]马志远,曹宝香.改进的决策树算法在入侵检测中的应用[J].计算机技术与发展,2014,24(01):151.
 MA Zhi-yuan,CAO Bao-xiang.Application of Improved Decision Tree Algorithm in Intrusion Detection System[J].,2014,24(03):151.
[3]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(03):148.
[4]林英 张雁 欧阳佳.日志检测技术在计算机取证中的应用[J].计算机技术与发展,2010,(06):254.
 LIN Ying,ZHANG Yan,OU Yang-jia.Application of Log Testing Technology in Computer Forensics[J].,2010,(03):254.
[5]李钦 余谅.基于免疫遗传算法的网格入侵检测模型[J].计算机技术与发展,2009,(05):162.
 LI Qin,YU Liang.Grid Intrusion Detection Model Based on Immune Genetic Algorithm[J].,2009,(03):162.
[6]黄世权.网络存储安全分析[J].计算机技术与发展,2009,(05):170.
 HUANG Shi-quan.Analysis of Network Storage's Safety[J].,2009,(03):170.
[7]李睿 肖维民.基于孤立点挖掘的异常检测研究[J].计算机技术与发展,2009,(06):168.
 LI Rui,XIAO Wei-min.Research on Anomaly Intrusion Detection Based on Outlier Mining[J].,2009,(03):168.
[8]胡琼凯 黄建华.基于协议分析和决策树的入侵检测研究[J].计算机技术与发展,2009,(06):179.
 HU Oiong-kai,HUANG Jian-hua.Intrusion Detection Based on Protocol Analysis and Decision Tree[J].,2009,(03):179.
[9]汪世义.基于优化支持向量机的网络入侵检测技术研究[J].计算机技术与发展,2009,(07):177.
 WANG Shi-yi.Network Intrusion Detection Based on Improved Support Vector Machine[J].,2009,(03):177.
[10]薛俊 陈行 陶军.一种基于神经网络的入侵检测技术[J].计算机技术与发展,2009,(08):148.
 XUE Jun,CHEN Hang,TAO Jun.Technology of Intrusion Detection Based on Neural Network[J].,2009,(03):148.

备注/Memo

备注/Memo:
国家自然科学基金(60573141);华为基金资助孙知信(1964-),男,安徽宣城人,教授,研究方向为计算机网络及安全
更新日期/Last Update: 1900-01-01