[1]王峻.一种基于强属性限定的贝叶斯分类模型[J].计算机技术与发展,2007,(02):205-207.
 WANG Jun.A Restricted Bayesian Classification Model Based on Strong Attributes[J].,2007,(02):205-207.
点击复制

一种基于强属性限定的贝叶斯分类模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年02期
页码:
205-207
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
A Restricted Bayesian Classification Model Based on Strong Attributes
文章编号:
1673-629X(2007)02-0205-03
作者:
王峻12
[1]合肥工业大学[2]淮南师范学院
Author(s):
WANG Jun
[1]Hefei University of Technology[2]Huainan Normal University
关键词:
朴素贝叶斯贝叶斯定理属性相关性
Keywords:
naive Bayes Bayes theorem attribute with correlation
分类号:
TP311
文献标志码:
A
摘要:
朴素贝叶斯分类模型一种简单而高效的分类模型.但它的条件独立性假设使其无法将属性间的依赖表达出来,影响了它分类的正确率。属性间的依赖关系与属性本身的特性有关,有些属性的特性决定了其他属性必然依赖于它.即强属性。文中通过分析属性相关性的度量和贝叶斯定理的变形公式,介绍了强属性的选择方法,通过在强弱属性之间添加增强弧以弱化朴素贝叶斯的独立性假设.扩展了朴素贝叶斯分类模型的结构。在此基础上提出一种基于强属性限定的贝叶斯分类模型SANBC。实验结果表明,与朴素贝叶斯分类模型相比,SANBC分类模型具有较高的分类正确
Abstract:
Naive Bayesian classification model is a simple and effective classification model, but its attribute independence assumption makes it unable to express the dependence among attributes, and affects its classification accuracy. The inter- dependence between attributes is closely related to their features, i.e. the features of some entail the others' dependence upon them - strong attributes. The paper presents SANBC(A Restricted Bayesian Classification Mmodel Based on Strong Attributes) following the extension of structure of naive Bayesian classification model, through the analysis of a variant of Bayes theorem, the evaluation of condition attribute with correlation, and the instruction of the selection of strong attributes and the attribute independence assumption that naive Bayesian classification model can be weakened through the adding of highlighting lines between strong and weak attribute. Compared with Bayesian classification model, experimental results show SANI3C has higher accuracy

相似文献/References:

[1]赵敏 倪志伟 刘斌.K—means与朴素贝叶斯在商务智能中的应用[J].计算机技术与发展,2010,(04):179.
 ZHAO Min,NI Zhi-wei,LIU Bin.Application Research of K - Means Clustering and Naive Bayesian Algorithm in Business Intelligence[J].,2010,(02):179.
[2]胡为成 胡学钢.基于遗传算法的朴素贝叶斯分类[J].计算机技术与发展,2007,(01):30.
 HU Wei-cheng,HU Xue-gang.Naive Bayes Classification Based on Genetic Algorithms[J].,2007,(02):30.
[3]王峻 周孟然.一种基于MDL度量的选择性扩展贝叶斯分类器[J].计算机技术与发展,2007,(07):35.
 WANG Jun,ZHOU Meng-ran.A Selective Augmented Naive Bayesian Classifier Based on MDL Score[J].,2007,(02):35.
[4]翟素兰 郑诚.用于入侵检测的基于粗糙集的贝叶斯分类器[J].计算机技术与发展,2006,(01):226.
 ZHAI Su-lan,ZHENG Cheng.Bayes Classifier Based on Rough Set Used in Intrusion Detection[J].,2006,(02):226.
[5]梁天超[][],荆晓远[],姚永芳[],等. 基于加权RFE-Bayes方法的软件缺陷预测模型[J].计算机技术与发展,2015,25(10):131.
 LIANG Tian-chao[][],JING Xiao-yuan[],YAO Yong-fang[],et al. A Prediction Model for Software Defect Based on Weighted RFE-Bayes[J].,2015,25(02):131.
[6]刘宝芹,牛耘. 多层次中文微博情绪分析[J].计算机技术与发展,2015,25(11):23.
 LIU Bao-qin,NIU Yun. Multi-hierarchy Emotion Analysis of Chinese Microblog[J].,2015,25(02):23.
[7]谢小军[],陈光喜[]. 基于多属性联合的朴素贝叶斯分类算法[J].计算机技术与发展,2016,26(12):77.
 XIE Xiao-jun[],CHEN Guang-xi[]. Naive Bayes Classification Algorithm Based on United Multi-attribute[J].,2016,26(02):77.
[8]朱顺乐.融合深度学习特征的汉维短语表过滤研究[J].计算机技术与发展,2018,28(07):149.[doi:10.3969/ j. issn.1673-629X.2018.07.032]
 ZHU Shun-le.Research on Chinese-Uyghur Phrase Table Filtering Integrating Deep Learning Features[J].,2018,28(02):149.[doi:10.3969/ j. issn.1673-629X.2018.07.032]
[9]许甜华,吴明礼.一种基于 TF-IDF 的朴素贝叶斯算法改进[J].计算机技术与发展,2020,30(02):75.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 016]
 XU Tian-hua,WU Ming-li.An Improved Naive Bayes Algorithm Based on TF-IDF[J].,2020,30(02):75.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 016]

备注/Memo

备注/Memo:
王峻(1967-),男,安徽淮南人,硕士,讲师,研究方向为数据挖掘
更新日期/Last Update: 1900-01-01