[1]孙志强.基于FP—Growth的入侵检测研究[J].计算机技术与发展,2006,(12):233-236.
 SUN Zhi-qiang.A Study of Intrusion Detection Based on Algorithm of FP - Growth[J].,2006,(12):233-236.
点击复制

基于FP—Growth的入侵检测研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年12期
页码:
233-236
栏目:
安全与防范
出版日期:
1900-01-01

文章信息/Info

Title:
A Study of Intrusion Detection Based on Algorithm of FP - Growth
文章编号:
1673-629X(2006)12-0233-04
作者:
孙志强
长沙理工大学计算机与通信工程学院
Author(s):
SUN Zhi-qiang
College of Computer and Communication Engineering, Changsha University of Science and Technology
关键词:
入侵检测关联规则FP-Growth算法数据挖掘
Keywords:
intrusion detectionassociation rulesFP - Growth algorithm data mining
分类号:
TP393.08
文献标志码:
A
摘要:
数据挖掘可以利用各种分析工具从海量数据中发现模型和数据间的关系并做出预测。为了解决入侵检测在不降低精度的同时提高检测速度的问题,提高算法的效率,将FP—Growth算法应用于入侵检测系统中,提出对FP—Growth算法改进FP—tree的头表结构并引入关键属性来挖掘原始审计数据中的频繁模式,实验结果表明改进后的算法比传统的关联算法在入侵检测中的应用效果更好。可以看出,将FP—Growth算法应用于入侵检测中是可行的
Abstract:
Data mining can find the relation between pattern and data from the large number of data and the forecast will be made. In order to adapt to the real- time nature of the intrusion of testing requirements,and enhance the efficiency of algorithms,presented to the b-P- Growth algorithms that improves FP- tree table structures and the introduction of key attributes to intrusion detection system. The experimental results showed improved algorithm has better results than traditional association algorithm in the application of intrusion detection, Accordig to the result,FP- Growth algorithm is useful to intrusion detection

相似文献/References:

[1]马志远,曹宝香.改进的决策树算法在入侵检测中的应用[J].计算机技术与发展,2014,24(01):151.
 MA Zhi-yuan,CAO Bao-xiang.Application of Improved Decision Tree Algorithm in Intrusion Detection System[J].,2014,24(12):151.
[2]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(12):105.
[3]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(12):84.
[4]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(12):148.
[5]林英 张雁 欧阳佳.日志检测技术在计算机取证中的应用[J].计算机技术与发展,2010,(06):254.
 LIN Ying,ZHANG Yan,OU Yang-jia.Application of Log Testing Technology in Computer Forensics[J].,2010,(12):254.
[6]耿波 仲红 徐杰 闫娜娜.用关联分析法对负荷预测结果进行二次处理[J].计算机技术与发展,2008,(04):171.
 GENG Bo,ZHONG Hong,XU Jie,et al.Using Correlation Analysis to Treat Load Forecasting Results[J].,2008,(12):171.
[7]文拯 梁建武 陈英.关联规则算法的研究[J].计算机技术与发展,2009,(05):56.
 WEN Zheng,LIANG Jian-wu,CHEN Ying.Research of Association Rules Algorithm[J].,2009,(12):56.
[8]李钦 余谅.基于免疫遗传算法的网格入侵检测模型[J].计算机技术与发展,2009,(05):162.
 LI Qin,YU Liang.Grid Intrusion Detection Model Based on Immune Genetic Algorithm[J].,2009,(12):162.
[9]黄世权.网络存储安全分析[J].计算机技术与发展,2009,(05):170.
 HUANG Shi-quan.Analysis of Network Storage's Safety[J].,2009,(12):170.
[10]王晓宇 秦锋 程泽凯 邹洪侠.关联规则挖掘技术的研究与应用[J].计算机技术与发展,2009,(05):220.
 WANG Xiao-yu,QIN Feng,CHENG Ze-kai,et al.Investigation and Application of Association Rules Mining[J].,2009,(12):220.
[11]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(12):143.
[12]杨德璋 李雷 申方成.快速多规则约束关联算法的入侵检测研究[J].计算机技术与发展,2010,(12):173.
 YANG De-zhang,LI Lei,SHEN Fang-cheng.Intrusion Detection Technology Research Based on Fast Multi-association Mining Algorithm[J].,2010,(12):173.
[13]周丽 王小玲.基于网络审计日志关联规则挖掘的改进[J].计算机技术与发展,2011,(06):150.
 ZHOU Li,WANG Xiao-ling.Improved Algorithm for Association Rules Mining Based on Network Audit Record[J].,2011,(12):150.
[14]陆培军 吴斌 黄海斌.改进关联规则挖掘算法在入侵检测中的应用[J].计算机技术与发展,2011,(11):231.
 LU Pei-jun,WU Bin,HUANG Hai-bin.Improved Association Rule Mining Algorithm and Its Applications in Intrusion Detection[J].,2011,(12):231.

备注/Memo

备注/Memo:
孙志强(1979-),男。山东人,硕士研究生,研究方向为数据挖掘;导师:姚跃华,副教授,研究方向为数据挖掘
更新日期/Last Update: 1900-01-01