[1]钟仕群 朱程荣 熊齐邦.一种基于贝叶斯网络的集成的故障定位模型[J].计算机技术与发展,2006,(12):13-15.
 ZHONG Shi-qun,ZHU Cheng-rong,XIONG Qi-bang.An Integrated Fault Localization Model Based on Bayesian Networks[J].,2006,(12):13-15.
点击复制

一种基于贝叶斯网络的集成的故障定位模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年12期
页码:
13-15
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
An Integrated Fault Localization Model Based on Bayesian Networks
文章编号:
1673-629X(2006)12-0013-03
作者:
钟仕群 朱程荣 熊齐邦
同济大学计算机科学与技术系
Author(s):
ZHONG Shi-qun ZHU Cheng-rong XIONG Qi-bang
Department of Computer Science and Technology, Tongji University
关键词:
故障管理贝叶斯网络主动探测被动测试不确定性推理
Keywords:
fault management Bayesian networks active probing passive diagnosis probabilistic reasoning
分类号:
TP393.07
文献标志码:
A
摘要:
故障管理是网络管理中最基本也是最重要的功能,目的是保证网络能够连续可靠地运行。故障管理可以分为两个主要的部分:故障检测和故障定位。其中故障定位是核心与难点。文中介绍了一种新的在症状收集时结合被动测试与主动探测,集成了被动诊断对网络正常的通信的影响较小以及主动探测方法可以快速有效地标识故障的优点。在诊断时采用贝叶斯网络来表示症状与故障之间的因果关系,利用不确定推理方法进行故障定位的模型。该模型包括故障推理、逼真度验证、动作选择三个模块
Abstract:
Fault management is the basic and the most important function in network management. It aims to assure management networks can run continuously and reliably. Fault management includes fault detection and fault localization. Fault localization is a core component in fault management system, in this paper,Bayesian networks are proposed to model causal correlation between symptoms and faults. A novel technique that integrates the advantage of both passive diagnosis and active probing is used to detect symptoms. Probabilistic reasoning is used to locate faults in the network. The model consists of three modules: fault reasoning;fidelity evaluation;and action selection

相似文献/References:

[1]宫义山 高媛媛.基于信息融合的诊断贝叶斯网络研究[J].计算机技术与发展,2009,(06):106.
 GONG Yi-shan,GAO Yuan-yuan.Diagnostic Bayesian Networks Research Based on Information Fusion[J].,2009,(12):106.
[2]奚海荣 马文丽 梁斌.基于贝叶斯网络SP算法的改进研究[J].计算机技术与发展,2009,(03):155.
 XI Hai-rong,MA Wen-li,LIANG Bin.Improvement of SP Algorithm Based on Bayesian Networks[J].,2009,(12):155.
[3]郭文婷 石坚.基于Spring与Hibernate的网络故障管理系统的研究[J].计算机技术与发展,2007,(06):239.
 GUO Wen-ting,SHI Jian.Research and Implementation of Network Fault Management Based on Spring and Hibernate[J].,2007,(12):239.
[4]王峻 周孟然.一种基于MDL度量的选择性扩展贝叶斯分类器[J].计算机技术与发展,2007,(07):35.
 WANG Jun,ZHOU Meng-ran.A Selective Augmented Naive Bayesian Classifier Based on MDL Score[J].,2007,(12):35.
[5]程泽凯.基于TAN结构的启发式贝叶斯网络结构学习算法[J].计算机技术与发展,2007,(08):61.
 CHENG Ze-kai.BN Structure Learning Heuristic Algorithm Based on TAN Structure[J].,2007,(12):61.
[6]蒋望东 林士敏 鲁明羽[].基于BIC测度和混合遗传算法的BNC结构学习[J].计算机技术与发展,2007,(03):84.
 JIANG Wang-dong,LIN Shi-min,LU Ming-yu.Structure Learning of BNC Based on BIC and Hybrid Genetic Algorithms[J].,2007,(12):84.
[7]孙笑微 赵大宇 李晓毅 唐恒永.用于数据挖掘的TAN分类器的研究与应用[J].计算机技术与发展,2006,(11):140.
 suN Xiao-wei,ZHAO Da-yu,LI Xiao-yi,et al.Study and Application of TAN Classifier for Data Mining[J].,2006,(12):140.
[8]潘晓东[] 王春江 黄镇鸿 张国辉[].作战重心建模中的条件概率生成方法研究[J].计算机技术与发展,2011,(04):56.
 PAN Xiao-dong,WANG Chun-jiang,HUANG Zhen-hong,et al.Research on Method of Generating Conditional Probabilities in COG Modeling[J].,2011,(12):56.
[9]洪海燕.基于贝叶斯分类器的简历筛选模型[J].计算机技术与发展,2012,(07):85.
 HONG Hai-yan.Screening of Resumes Based on Bayesian Classifier[J].,2012,(12):85.
[10]吴绍兵.基于贝叶斯网络的信息提取技术研究[J].计算机技术与发展,2012,(11):225.
 WU Shao-bing.Research of Information Extraction Technique Based on Bayesian Network[J].,2012,(12):225.

备注/Memo

备注/Memo:
钟仕群(1982~),女。广东人,硕士研究生,研究方向为容错技术、网络管理;朱程荣,副教授.硕士生导师,研究方向为容错技术;熊齐邦,教授,硕士生导师,研究方向为网络管理
更新日期/Last Update: 1900-01-01