[1]朱昭云,张 波,叶昭良,等.基于 YOLOv5s 的海上风电设施检测与预警评估[J].计算机技术与发展,2023,33(04):182-189.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 027]
 ZHU Zhao-yun,ZHANG Bo,YE Zhao-liang,et al.Offshore Wind Power Facilities Detection and Early Warning Assessment Based on Improved YOLOv5s[J].,2023,33(04):182-189.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 027]
点击复制

基于 YOLOv5s 的海上风电设施检测与预警评估()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年04期
页码:
182-189
栏目:
人工智能
出版日期:
2023-04-10

文章信息/Info

Title:
Offshore Wind Power Facilities Detection and Early Warning Assessment Based on Improved YOLOv5s
文章编号:
1673-629X(2023)04-0182-08
作者:
朱昭云1 张 波2 叶昭良2 黄曙荣1 曹 卫1
1. 盐城工学院 机械工程学院,江苏 盐城 224007;
2. 华能海上风电科学技术研究有限公司,江苏 盐城 224045
Author(s):
ZHU Zhao-yun1 ZHANG Bo2 YE Zhao-liang2 HUANG Shu-rong1 CAO Wei1
1. School of Mechanical Engineering,Yancheng Institute of Technology,Yancheng 224007,China;
2. Huaneng Offshore Wind Power Science and Technology Research Co. ,Ltd. ,Yancheng 224045,China
关键词:
机器视觉风电设施检测船舶检测YOLOv5s轻量化注意力机制双向金字塔
Keywords:
machine visiondetection of wind power facilitiesship detectionYOLOv5slightweightattention mechanism bidirectional feature pyramid
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 04. 027
摘要:
海上风电设施检测在海上风电安全监测领域发挥着重要作用。 由于海上环境复杂及海上目标的多样性,现有海上
目标检测算法存在网络复杂、检测精度低的问题,难以满足实时性检测和实用性部署要求。 针对该问题,该文提出
了一种改进 YOLOv5s 的海上风电设施检测算法。 首先,将 YOLOv5s 的主干网络替换为轻量化 GhostNet 进行特征提取,降低网络模型的参数量和计算量;其次,在主干网络末端和 Neck 层分别施加注意力机制( SENet) ,自适应学习重要通道特征权重,提高检测精度;最后,将 Neck 层的 PANet 结构改进为双向金字塔( BiFPN) ,通过融合不同尺度特征提升检测速度。 实验结果表明,该算法在降低网络模型参数量和计算量的同时,在船舶数据集上平均精度达到了 96. 8% ,比原始 YOLOv5s 网络提升了 2. 6 百分点,检测速度达到了 47 FPS。
Abstract:
Offshore wind power facility detection plays a vital role in the field of offshore wind power safety monitoring.?
Due to the complexity of the offshore environment and the diversity of offshore targets, the existing offshore target detection algorithms have theproblems of complex network and low detection accuracy,which are difficult to meet the requirements of real-time detection and practicaldeployment. To solve this problem,we propose an improved YOLOv5s offshore wind power facility detection algorithm. Firstly,thebackbone network of YOLOv5s is replaced by lightweight GhostNet for feature extraction,which reduces the amount of parameters and calculation of the network model. Secondly,the attention mechanism ( SENet) is applied at the end of the backbone network and theNeck layer respectively to adaptively learn the feature weights of important channels to improve the detection accuracy. Finally, thePANet structure of the neck layer is improved to a bi-directional pyramid ( BiFPN) to improve the detection speed by fusing differentscale features. The experimental results show that the proposed algorithm reduces the amount of network model parameters andcalculation,while the average accuracy on the ship data set reaches 96. 8% ,which is 2. 6% higher than the original YOLOv5s network,and the detection speed reaches 47 FPS.

相似文献/References:

[1]王明平 宋丽梅.基于计算机视觉的车架号采集系统[J].计算机技术与发展,2008,(04):239.
 WANG Ming-ping,SONG Li-mei.Vehicle Identify Number Acquisition System Based on Machine-Vision[J].,2008,(04):239.
[2]蒋恩松 肖辉军 孙刘杰 熊清廉.基于机器视觉的套印误差自动检测系统设计[J].计算机技术与发展,2008,(07):173.
 JIANG En-song,XIAO Hui-jun,SUN Liu-jie,et al.Design of Automatic Detecting Printing Registration Deviation System Based on Machine Vision[J].,2008,(04):173.
[3]张锦娟 师军 于佳丽 卢照.SpikeNet的研究及其在快速人脸识别中的应用[J].计算机技术与发展,2010,(07):235.
 ZHANG Jin-juan,SHI Jun,YU Jia-li,et al.Research on SpikeNet and Its Application in Quick Face Recognition[J].,2010,(04):235.
[4]方鹤鹤 冯宏伟 马煜.基于形态滤波和分水岭变换的边缘检测方法[J].计算机技术与发展,2006,(01):49.
 FANG He-he,FENG Hong-wei,MA Yu.Edge Detection Method Based on Morphology Filter and Watershed[J].,2006,(04):49.
[5]李雪晨 汪仁煌 艾星芳.改进的弯曲度算法在阶梯修剪检测中的应用[J].计算机技术与发展,2012,(03):166.
 LI Xue-chen,WANG Ren-huang,AI Xing-fang.Use of Improved Tortuosity Algorithm in Step Form Disfigurement Test[J].,2012,(04):166.
[6]赵立双 冯莹 曹毓.单目视觉定位中SURF算法参数的优化[J].计算机技术与发展,2012,(06):6.
 ZHAO Li-shuang,FENG Ying,CAO Yu.Optimization of SURF Parameters in Monocular Visual Odometry[J].,2012,(04):6.
[7]徐自越 李战明 李二超.OpenCV在焊缝实时检测与处理系统中的应用[J].计算机技术与发展,2012,(08):170.
 XU Zi-yue,LI Zhan-ming,LI Er-chao.Application of OpenCV on Real-time Detection and Processing System of Seam[J].,2012,(04):170.
[8]杨杰,卢盛林,赵晓芳.机器视觉在钢化玻璃缺陷检测中的应用研究[J].计算机技术与发展,2013,(03):211.
 YANG Jie,LU Sheng-lin,ZHAO Xiao-fang.Application and Research of Machine Vision in Tempered Glass Defect Inspection[J].,2013,(04):211.
[9]陈鹏宇[],孙文奇[],赵忠龙[]. 基于机器视觉的印刷质量检测研究[J].计算机技术与发展,2014,24(07):103.
 CHEN Peng-yu[],SUN Wen-qi[],ZHAO Zhong-long[]. rinting Quality Detection Based on Machine Vision[J].,2014,24(04):103.
[10]洪磊[],嵇保健[],洪峰[]. 一种基于亚像素角点的 SIFT 立体匹配算法研究[J].计算机技术与发展,2016,26(01):48.
 HONG Lei[],JI Bao-jian[],HONG Feng[]. Research on a SIFT Stereo Matching Algorithm Based on Sub-pixel Corners[J].,2016,26(04):48.

更新日期/Last Update: 2023-04-10