[1]李雪晨 汪仁煌 艾星芳.改进的弯曲度算法在阶梯修剪检测中的应用[J].计算机技术与发展,2012,(03):166-168.
 LI Xue-chen,WANG Ren-huang,AI Xing-fang.Use of Improved Tortuosity Algorithm in Step Form Disfigurement Test[J].,2012,(03):166-168.
点击复制

改进的弯曲度算法在阶梯修剪检测中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年03期
页码:
166-168
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Use of Improved Tortuosity Algorithm in Step Form Disfigurement Test
文章编号:
1673-629X(2012)03-0166-03
作者:
李雪晨 汪仁煌 艾星芳
广东工业大学
Author(s):
LI Xue-chen WANG Ren-huang AI Xing-fang
Guangdong University of Technology
关键词:
形状检测机器视觉非接触测量缺陷检测拐点检测
Keywords:
shape test machine vision noncontact measurement disfigurement detection comer detection
分类号:
TP39
文献标志码:
A
摘要:
在羽毛球生产中,有缺陷的羽毛必须分拣出来,目前主要依靠人工完成。机器视觉可以被应用于羽毛自动分拣邻域以提高生产效率。文中针对羽毛缺陷的阶梯形状修剪问题,提出改进的弯曲度算法,对羽毛边缘曲线的拐点进行定位。在原有算法的基础上,增加了对拐点附近羽毛边缘形状的判断。考虑阶梯修剪的特有模式,通过模式识别的方式对羽毛阶梯修剪特征进行识别。提高了算法的稳定性,降低误判率。可区分阶梯修剪和分叉等其它缺陷。通过实际检验,该算法判断的结果是可靠的
Abstract:
In the production of badminton, the feather which has disfigurement must be collected. Now, it is mainly depended on human. Machine vision could be used in this area to improve the efficiency. To solve the problem of the step form disfigurement of the feathers, an improved algorithm based on the tortuosity was presented here to detect comers on contour in digital image. Focusing on the specific mode of step form disfigurement, the algorithm increased the stability and decreased the error rate. By using this algorithm the step form and furcation disfigurement or other similar ones can be differentiated correctly. The practical production proved that the algorithm is credible

相似文献/References:

[1]王明平 宋丽梅.基于计算机视觉的车架号采集系统[J].计算机技术与发展,2008,(04):239.
 WANG Ming-ping,SONG Li-mei.Vehicle Identify Number Acquisition System Based on Machine-Vision[J].,2008,(03):239.
[2]蒋恩松 肖辉军 孙刘杰 熊清廉.基于机器视觉的套印误差自动检测系统设计[J].计算机技术与发展,2008,(07):173.
 JIANG En-song,XIAO Hui-jun,SUN Liu-jie,et al.Design of Automatic Detecting Printing Registration Deviation System Based on Machine Vision[J].,2008,(03):173.
[3]张锦娟 师军 于佳丽 卢照.SpikeNet的研究及其在快速人脸识别中的应用[J].计算机技术与发展,2010,(07):235.
 ZHANG Jin-juan,SHI Jun,YU Jia-li,et al.Research on SpikeNet and Its Application in Quick Face Recognition[J].,2010,(03):235.
[4]方鹤鹤 冯宏伟 马煜.基于形态滤波和分水岭变换的边缘检测方法[J].计算机技术与发展,2006,(01):49.
 FANG He-he,FENG Hong-wei,MA Yu.Edge Detection Method Based on Morphology Filter and Watershed[J].,2006,(03):49.
[5]赵立双 冯莹 曹毓.单目视觉定位中SURF算法参数的优化[J].计算机技术与发展,2012,(06):6.
 ZHAO Li-shuang,FENG Ying,CAO Yu.Optimization of SURF Parameters in Monocular Visual Odometry[J].,2012,(03):6.
[6]徐自越 李战明 李二超.OpenCV在焊缝实时检测与处理系统中的应用[J].计算机技术与发展,2012,(08):170.
 XU Zi-yue,LI Zhan-ming,LI Er-chao.Application of OpenCV on Real-time Detection and Processing System of Seam[J].,2012,(03):170.
[7]杨杰,卢盛林,赵晓芳.机器视觉在钢化玻璃缺陷检测中的应用研究[J].计算机技术与发展,2013,(03):211.
 YANG Jie,LU Sheng-lin,ZHAO Xiao-fang.Application and Research of Machine Vision in Tempered Glass Defect Inspection[J].,2013,(03):211.
[8]陈鹏宇[],孙文奇[],赵忠龙[]. 基于机器视觉的印刷质量检测研究[J].计算机技术与发展,2014,24(07):103.
 CHEN Peng-yu[],SUN Wen-qi[],ZHAO Zhong-long[]. rinting Quality Detection Based on Machine Vision[J].,2014,24(03):103.
[9]洪磊[],嵇保健[],洪峰[]. 一种基于亚像素角点的 SIFT 立体匹配算法研究[J].计算机技术与发展,2016,26(01):48.
 HONG Lei[],JI Bao-jian[],HONG Feng[]. Research on a SIFT Stereo Matching Algorithm Based on Sub-pixel Corners[J].,2016,26(03):48.
[10]张哲,朱铮涛,李渊,等. 瓶盖缺陷在线自动检测技术研究[J].计算机技术与发展,2016,26(06):151.
 ZHANG Zhe,ZHU Zheng-tao,LI Yuan,et al. Research on Online Automatic Detecting Technology for Bottle Cap Defects[J].,2016,26(03):151.

备注/Memo

备注/Memo:
企业委托项目(企2007001)李雪晨(1987-),男,山西太原人.硕士研究生,研究方向为计算机测控;汪仁煌,教授,博士生导师,研究方向为计算机测控
更新日期/Last Update: 1900-01-01