[1]李铁维,王牧阳,周 炎.基于点线结合特征的单目视觉里程计[J].计算机技术与发展,2021,31(01):48-53.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 009]
 LI Tie-wei,WANG Mu-yang,ZHOU Yan.Monocular Visual Odometry Based on Point and Line Features[J].,2021,31(01):48-53.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 009]
点击复制

基于点线结合特征的单目视觉里程计()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年01期
页码:
48-53
栏目:
图形与图像
出版日期:
2021-01-10

文章信息/Info

Title:
Monocular Visual Odometry Based on Point and Line Features
文章编号:
1673-629X(2021)01-0048-06
作者:
李铁维1王牧阳2周 炎1
1. 武汉大学 遥感信息工程学院,湖北 武汉 430079; 2. 香港理工大学 建设及环境学院,香港 999077
Author(s):
LI Tie-wei1WANG Mu-yang2ZHOU Yan1
1. School of Remote Sensing and Information Engineering,Wuhan University,Wuhan 430079,China;
2. Faculty of Construction and Environment,The Hong Kong Polytechnic University,Hong Kong 999077,China
关键词:
计算机视觉单目视觉里程计点线结合特征普吕克坐标图优化
Keywords:
computer visionmonocular visual odometrypoint and line featuresPlucker coordinategraph optimization
分类号:
TP242
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 01. 009
摘要:
SLAM(即时定位与地图构建)系统是近年来计算机视觉领域的一大重要课题,其中特征法的 SLAM 凭借稳定性好、计算效率高的优点成为 SLAM 算法的主流。 目前特征法 SLAM 主要基于点特征进行。 针对基于点特征的视觉里程计依赖于数据质量,相机运动过快时容易跟丢,且生成的特征地图不包含场景结构信息等缺点,提出了一种基于点线结合特征的优化算法。相较于传统基于线段端点的六参数表达方式,算法采用一种四参数的方式表示空间直线,并使用点线特征进行联合图优化估计相机位姿。 使用公开数据集和自采集鱼眼影像数据分别进行实验的结果表明,与仅使用点特征的方法相比,该方法可有效改善因相机运动过快产生的跟丢问题,增加轨迹长度,提升位姿估计精度,且生成的稀疏特征地图更能反映场景结构特征。
Abstract:
In recent years,SLAM has been an important topic in the field of computer vision. is one of the essential tasks in computer vision area. Among all the algorithms, feature-based SLAM stands out for its robustness and efficiency, especially point feature-based SLAM. However, as the visual odometry based on point features depends on data quality and is difficult to be tracked when the camera moves too fast,and the map constructed contains little scene structure information,a method based on point and line combination features is proposed. Rather than the traditional six-parameter representation of two end points for lines,the proposed algorithm applies a four parameter representation to express space lines,and uses both point and line features to optimize camera position via graph optimi-zation. Experimental results on public datasets and self-collected fisheye camera image sequences show that compared with methods that only use point features,the proposed algorithm can effectively make improvements on lost tracking caused by camera moving too fast,hence increasing the length of trajectory as well as the accuracy of position estimation. The structure of the scene is also better represented in sparse point-line feature map.

相似文献/References:

[1]黄艳 赵越.3D靶标的摄像机三步标定算法与实现[J].计算机技术与发展,2010,(01):135.
 HUANG Yan,ZHAO Yue.Algorithm and Realization of Three-step Camera Calibration Based on 3D-Target[J].,2010,(01):135.
[2]付海洋 牛连强 刘守琳.一种基于平面模板的单应矩阵求解方法[J].计算机技术与发展,2010,(04):69.
 FU Hai-yang,NIU Lian-qiang,LIU Shou-lin.A Solving Homography Matrix Method Based on Planar Pattern[J].,2010,(01):69.
[3]张铖伟 王彪 徐贵力.摄像机标定方法研究[J].计算机技术与发展,2010,(11):174.
 ZHANG Cheng-wei,WANG Biao,XU Gui-li.A Study on Classification of Camera Calibration Methods[J].,2010,(01):174.
[4]毛雁明 杨慧玲.一种新的立体匹配算法[J].计算机技术与发展,2011,(03):105.
 MAO Yan-ming,YANG Hui-ling.A New Stereo Matching Algorithm[J].,2011,(01):105.
[5]杨晟,李学军,王珏,等.连续尺度复合分析核线重排列影像准稠密匹配[J].计算机技术与发展,2013,(04):111.
 YANG Sheng,LI Xue-jun,WANG Jue,et al.Continuous Scale Multi-change Detecting Quasi-dense Matching for Epipolar Resample Images[J].,2013,(01):111.
[6]卢振宇,郭星,魏赛,等.基于计算机视觉的虚拟安全空间预警技术[J].计算机技术与发展,2014,24(02):237.
 LU Zhen-yu,GUO Xing,WEI Sai,et al.A Surveillance Technology for Virtual Security Space Based on Computer Vision[J].,2014,24(01):237.
[7]李孟,周波,孟正大,等. 三目立体相机的标定研究[J].计算机技术与发展,2015,25(02):69.
 LI Meng,ZHOU Bo,MENG Zheng-da,et al. Study on Trinocular Stereo Camera Calibration[J].,2015,25(01):69.
[8]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(01):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[9]程龙乐[][],许金林[],李皙茹[][],等. 基于图像处理的跑步机速度自适应技术研究[J].计算机技术与发展,2016,26(10):92.
 CHENG Long-le[][],XU Jin-lin[],LI Xi-ru[][],et al. Research on Speed-adaptive Technology of Treadmill Based on Image Processing[J].,2016,26(01):92.
[10]严一鸣[],郭星[]. 基于计算机视觉的交互式电子沙盘系统研究[J].计算机技术与发展,2017,27(06):195.
 YAN Yi-ming[],GUO Xing[]. Investigation on Interactive Electronic Sand Table System with Computer Vision[J].,2017,27(01):195.

更新日期/Last Update: 2020-01-10