[1]孙卫喜,孙欢.网络安全态势预测技术研究[J].计算机技术与发展,2019,29(04):100-104.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 021]
 SUN Wei-xi,SUN Huan.Research on Network Security Situation Prediction Technology[J].,2019,29(04):100-104.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 021]
点击复制

网络安全态势预测技术研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年04期
页码:
100-104
栏目:
安全与防范
出版日期:
2019-04-10

文章信息/Info

Title:
Research on Network Security Situation Prediction Technology
文章编号:
1673-629X(2019)04-0100-05
作者:
孙卫喜1孙欢2
1. 渭南师范学院 网络安全与信息化学院,陕西 渭南 714099;2. 西安电子科技大学 经济与管理学院,陕西 西安 710071
Author(s):
SUN Wei-xi1SUN Huan2
1. School of Network Security and Information Technology,Weinan Normal University, Weinan 714099,China;2. School of Economics and Management,Xidian University,Xi爷an 710071,China
关键词:
安全态势支持向量机粒子群算法态势预测
Keywords:
security situationsupport vector machineparticle swarm optimizationsituation prediction
分类号:
TP301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 04. 021
摘要:
网络安全态势预测是防御网络安全威胁的关键。在对目前网络安全态势预测方法进行分析研究后,给出支持向量机(SVM)与改进粒子群优化算法相结合的网络安全态势预测方法。该方法使用改进的粒子群优化算法来优化SVM的三个参数,其充分利用了SVM收敛速度快、样本小、泛化能力强、机器学习的优点,克服了PSO-SVM存在局部最优解及粒子早熟的问题。该方法更适合于具有时变性与非线性特征的网络安全态势预测,且克服了使用线性方法进行网络安全态势预测带来的预测精度低、描述网络目前状态与未来状态关系困难的问题。实验结果表明,使用该预测方法处理先前收集到的网络安全数据,明显提高了网络态势的预测精度,实现了对网络安全威胁的有效防御。
Abstract:
Network security situation prediction is the key to defending against network security threats. After the analysis and research ofthe current network security situation prediction methods,we present a new one combined with support vector machine (SVM) and improved particle swarm optimization. This method uses the improved particle swarm optimization to optimize the three parameters of SVM,and makes full use of the advantages of SVM such as fast convergence speed,small sample size,strong generalization and machine learning to overcome the problems of local optimal solution and particle premature in PSO-SVM. It is more suitable for the network security situation prediction with time-varying and nonlinear characteristics,and overcomes the problem of low prediction accuracy and difficult description of the relationship between the current state and the future state brought by the linear method in the network security situation prediction. Experiment shows that the proposed method has improved the prediction accuracy of the network situation by dealing with the previously collected network security data,and also has realized the effective defense of the network security threat.

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(04):125.
[2]陈俏 曹根牛 陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,(01):247.
 CHEN Qiao,CAO Gen-niu,CHEN Liu.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].,2010,(04):247.
[3]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(04):75.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(04):17.
[5]曹庆璞 董淑福 罗赟骞.网络时延的混沌特性分析及预测[J].计算机技术与发展,2010,(04):43.
 CAO Qing-pu,DONG Shu-fu,LUO Yun-qian.Chaotic Analysis and Prediction of Internet Time- Delay[J].,2010,(04):43.
[6]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(04):84.
[7]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(04):21.
[8]孙秋凤.microRNA计算识别中的模式识别技术[J].计算机技术与发展,2010,(06):97.
 SUN Qiu-feng.Pattern Recognition Technology for MicroRNA Identification[J].,2010,(04):97.
[9]刘振岩 王勇 陈立平 马俊杰 陈天恩.基于SVM的农业智能决策Web服务的研究与实现[J].计算机技术与发展,2010,(06):213.
 LIU Zhen-yan,WANG Yong,CHEN Li-ping,et al.Research and Implementation of Intelligence Decision Web Services Based on SVM for Digital Agriculture[J].,2010,(04):213.
[10]王李冬.一种新的人脸识别算法[J].计算机技术与发展,2009,(05):147.
 WANG Li-dong.A New Algorithm of Face Recognition[J].,2009,(04):147.

更新日期/Last Update: 2019-04-10