[1]朱小明.基于多光谱遥感图像信息的水质污染监测研究[J].计算机技术与发展,2018,28(11):52-55.[doi:10.3969/ j. issn.1673-629X.2018.11.012]
 ZHU Xiao-ming.Research on Water Quality Monitoring Based on Multi-spectral Remote Sensing Imagery[J].,2018,28(11):52-55.[doi:10.3969/ j. issn.1673-629X.2018.11.012]
点击复制

基于多光谱遥感图像信息的水质污染监测研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年11期
页码:
52-55
栏目:
智能、算法、系统工程
出版日期:
2018-11-10

文章信息/Info

Title:
Research on Water Quality Monitoring Based on Multi-spectral Remote Sensing Imagery
文章编号:
1673-629X(2018)11-0052-04
作者:
朱小明
河海大学 计算机与信息学院,江苏 南京 211100
Author(s):
ZHU Xiao-ming
School of Computer and Information,Hohai University,Nanjing 211100,China
关键词:
水质监测遥感图像数据处理极限学习机
Keywords:
water quality monitoringremote sensing imagedata processingextreme learning machine
分类号:
TP301
DOI:
10.3969/ j. issn.1673-629X.2018.11.012
文献标志码:
A
摘要:
在国内陆水资源保护与污染治理事业中,水资源污染监测是其中的核心环节。传统水质监测方法存在需要消耗大量人力物力和时空局限性的问题。 随着遥感技术和成像光谱仪的发展,以及机器学习相关领域的快速发展,提出一种基于极限学习机的高分图像水质监测方法。 对高分一号卫星所检测到的多光谱水域图像数据信息进行处理,并结合部分时间段的水质检测站实测数据对处理后的 WFV 数据进行标记,搭建基于极限学习机模型对水域进行异常检测,定性地判断该水域是否污染,通过对太湖兰山嘴和洪泽湖盱眙淮河大桥区域的水质污染判定,结果表明该方法对水质监测具有一定的可行性和有效性。
Abstract:
In China’s inland water resources protection and pollution control business,water pollution monitoring is one of the core links.Traditional water quality monitoring methods have the problem of consuming a great deal of manpower,material resources and spacetime limitations. With the development of remote sensing technology and imaging spectrometers,and the rapid development of machine learning related fields,we propose a GF-1 image water quality monitoring method based on extreme learning machine. The processing of multi-spectral water image data detected by GF-1 satellite is carried out,and the processed WFV data is marked by using the measured data of water quality detection station in some time periods,and then the water quality is determined based on extreme learning machine model. The results show that this method is feasible and effective for water quality monitoring of Taihu Lanshanzui and Hongzehu Xuyi Huaihe River Bridge.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(11):36.
[2]赵艳飞 高清维 卢一相.基于多尺度Retinex算法的遥感图像增强[J].计算机技术与发展,2008,(02):70.
 ZHAO Yan-fei,GAO Qing-wei,LU Yi-xiang.Remote Sensing Image Enhancement Based on Multi- Scale Retinex Algorithm[J].,2008,(11):70.
[3]陈昌生 许文波 赵健.基于ArcSDE的卫星遥感影像数据库研究[J].计算机技术与发展,2010,(07):80.
 CHEN Chang-sheng,XU Wen-bo,ZHAO Jian.Research on Remote Sensing Image Database Based on ArcSDE[J].,2010,(11):80.
[4]李晓飞 马大玮 范小麟 胡焰智.基于数学形态学的遥感图像多感兴趣区域提取[J].计算机技术与发展,2007,(12):56.
 LI Xiao-fei,MA Da-wei,FAN Xiao-lin,et al.Extraction of ROIs Based on Mathematical Morphology toward Applications on Remote Sense Image Processing[J].,2007,(11):56.
[5]董敏[],阎镇.基于CUDA的航天遥感图像实时快视系统的研究[J].计算机技术与发展,2014,24(06):32.
 DONG Min[][][],YAN Zhen[].Research on Aerospace Remote Sensing Images Real-time Quick-view System Based on CUDA[J].,2014,24(11):32.
[6]张亚亚,张立民,刘小伟,等. 基于语义网的遥感图像分类[J].计算机技术与发展,2015,25(05):218.
 ZHANG Ya-ya,ZHANG Li-min,LIU Xiao-wei,et al. Remote Sensing Image Classification Based on Semantic-net[J].,2015,25(11):218.
[7]黄涛[][],薛丰昌[],钱洪亮[],等. 基于 NSCT 和自适应模糊阈值遥感图像去噪算法[J].计算机技术与发展,2016,26(01):65.
 HUANG Tao[][],XUE Feng-chang[],QIAN Hong-liang[],et al. Remote Sensing Image Denoising Algorithm Based on NSCT and Adaptive Fuzzy Threshold[J].,2016,26(11):65.
[8]龚林松,李士进.基于改进的SLIC和OTSU的遥感影像水体提取[J].计算机技术与发展,2019,29(01):145.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 030]
 GONG Lin-song,LI Shi-jin.Water Information Extraction from Remote Sensing Imagery Based onImproved SLIC and OTSU[J].,2019,29(11):145.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 030]
[9]岳钦崟,李 虎.基于 MPI 并行遥感典型地类提取应用[J].计算机技术与发展,2020,30(07):104.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 023]
 YUE Qin-yin,LI Hu.Application of MPI-based Parallel Remote Sensing for Typical Ground Classification Extraction[J].,2020,30(11):104.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 023]
[10]张永福,宋海林,班 越,等.融合特征的深度学习遥感图像目标检测模型[J].计算机技术与发展,2021,31(09):48.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 009]
 ZHANG Yong-fu,SONG Hai-lin,BAN Yue,et al.Fusion Features Based Deep Learning Remote Sensing Image Target Detection Model[J].,2021,31(11):48.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 009]

更新日期/Last Update: 2018-11-10