[1]邱东,郭红涛,刘明硕.AOD 炉炉衬风口侵蚀识别方法的研究[J].计算机技术与发展,2018,28(06):133-136.[doi:10.3969/ j. issn.1673-629X.2018.06.030]
 QIU Dong,GUO Hong-tao,LIU Ming-shuo.Research on Tuyere Erosion Identification Method of AOD Furnace Liner[J].,2018,28(06):133-136.[doi:10.3969/ j. issn.1673-629X.2018.06.030]
点击复制

AOD 炉炉衬风口侵蚀识别方法的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年06期
页码:
133-136
栏目:
应用开发研究
出版日期:
2018-06-10

文章信息/Info

Title:
Research on Tuyere Erosion Identification Method of AOD Furnace Liner
文章编号:
1673-629X(2018)06-0133-04
作者:
邱东郭红涛刘明硕
长春工业大学 电气与电子工程学院,吉林 长春 130012
Author(s):
QIU DongGUO Hong-taoLIU Ming-shuo
Department of Electrical and Electronic Engineering,Changchun University of Technology,Changchun 130012,China
关键词:
炉衬探伤图像增强阈值处理缺陷识别
Keywords:
furnace liner inspectionimage enhancementthreshold processingdefect recognition
分类号:
TP301.6
DOI:
10.3969/ j. issn.1673-629X.2018.06.030
文献标志码:
A
摘要:
低碳铬铁合金冶炼(简称 AOD 冶炼)是一个复杂多变的物理化学反应过程,对炉衬的侵蚀时刻在进行,影响炉衬的使用寿命。 因此,对炉衬侵蚀状态的检测、监控是非常必要的。 在现有的检测方法中,很少有方法是对侵蚀面积进行直观体现的。 基于此,设计了一种基于图像特征分析的 AOD 炉炉衬风口侵蚀识别方法,运用数字图像处理技术实现炉衬风口侵蚀面积的提取。 该方法通过对采样图像进行图像增强,再进行高斯滤波处理,最后采用阈值处理、数学形态学方法来提取缺陷信息。 为验证该方法的有效性,设计了模拟实验装置,用工业 CCD 摄像机获取炉衬样品检测的图像,进行缺陷识别处理。实验结果表明,系统检测图像能够明确反映损伤的面积信息,误差范围在 3%之内。
Abstract:
Smelting of low carbon ferrochrome alloy (AOD smelting) is a complicated and changeful reaction process of physics and chemistry. The corrosion of lining is always in progress,and the service life of lining is affected. Therefore,it is necessary to detect and monitor the state of lining. In the existing methods of detection,there is little way to directly reflect the area of erosion. For this,we design a liner tuyere erosion of AOD furnace identification method based on image characterized analysis,and realize the extraction of liner tuyere erosion by digital image processing technology. The method enhances the sampled image and carries on the Gaussian filtering for that. Finally the defect information is extracted through threshold processing and mathematical morphology. In order to verify the validity of the proposed method,an experimental system is developed,which uses industrial CCD to capture the images of liner samples and then identify defects of the sample. Experiments show that the information of erosion area can be clearly reflect by the system’s output and the range of error is within 3%.

相似文献/References:

[1]李春林 杨洁 杨世兴.造影图像中冠状动脉的增强方法研究[J].计算机技术与发展,2010,(03):188.
 LI Chun-lin,YANG Jie,YANG Shi-xing.Study on Approach to Enhance Coronary Artery in Angiograms[J].,2010,(06):188.
[2]钟科 潘保昌 郑胜林 梁坚.一种骨科X线片的混合图像增强算法[J].计算机技术与发展,2009,(06):124.
 ZHONG Ke,PAN Bao-chang,ZHENG Sheng-lin,et al.A Mixed Algorithm for Orthopedic X- Ray Image Enhancement[J].,2009,(06):124.
[3]贾占朝 张亚鸣.基于遗传微粒群混合算法的灰度图像增强[J].计算机技术与发展,2009,(07):69.
 JIA Zhan-chao,ZHANG Ya-ming.A Gray- Image Enhancement Based GA and PSO Hybrid Algorithm[J].,2009,(06):69.
[4]王玉震 李雷.基于SVR的图像增强方法[J].计算机技术与发展,2009,(01):60.
 WANG Yu-zhen,LI Lei.Image Enhancement Based on SVR[J].,2009,(06):60.
[5]赵艳飞 高清维 卢一相.基于多尺度Retinex算法的遥感图像增强[J].计算机技术与发展,2008,(02):70.
 ZHAO Yan-fei,GAO Qing-wei,LU Yi-xiang.Remote Sensing Image Enhancement Based on Multi- Scale Retinex Algorithm[J].,2008,(06):70.
[6]刘辉 赵文杰 吴畏.改进的多尺度Retinex红外图像增强算法[J].计算机技术与发展,2011,(04):105.
 LIU Hui,ZHAO Wen-jie,WU Wei.An Improved Multi-scale Retinex Infrared Image Enhancement Algorithm[J].,2011,(06):105.
[7]葛彬 周宁宁.基于MMTD的保留灰度值的直方图均衡化[J].计算机技术与发展,2012,(12):63.
 GE Bin,ZHOU Ning-ning.A Gray Value Retention Histogram Equalization Based on MMTD[J].,2012,(06):63.
[8]李雷 张宁 房小萍.基于二级模糊增强的图像分割[J].计算机技术与发展,2012,(12):161.
 LI Lei,ZHANG Ning,FANG Xiao-ping.Image Segmentation Method Based on Twice Fuzzy Enhancements[J].,2012,(06):161.
[9]宋欢欢,李雷.基于模糊熵的两种图像增强技术[J].计算机技术与发展,2013,(06):67.
 SONG Huan-huan,LI Lei.Two Technologies of Image Enhancement Based on Fuzzy Entropy[J].,2013,(06):67.
[10]郭依正,焦蓬蓬.Matlab GUI在低质量指纹图像增强中的应用[J].计算机技术与发展,2013,(07):230.
 GUO Yi-zheng,JIAO Peng-peng.Application of Matlab GUI in Enhancement of Low-quality Fingerprint Image[J].,2013,(06):230.

更新日期/Last Update: 2018-08-22