[1]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145-149.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(02):145-149.[doi:10.3969/j.issn.1673-629X.2018.02.031]
点击复制

表情识别算法研究进展与性能比较()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年02期
页码:
145-149
栏目:
应用开发研究
出版日期:
2018-02-10

文章信息/Info

Title:
Research and Performance Comparison of Facial Expression Recognition Algorithm
文章编号:
1673-629X(2018)02-0145-05
作者:
崔凤焦
北京科技大学 计算机与通信工程学院,北京 100083
Author(s):
CUI Feng-jiao
School of Computer and Communication Engineering,University of Science and Technology,Beijing 100083,China
关键词:
人脸表情识别卷积神经网络支持向量机Adaboost人机交互
Keywords:
facial expression recognitionconvolutional neural networksupport vector machineAdaboosthuman-computer interaction
分类号:
TP391.4
DOI:
10.3969/j.issn.1673-629X.2018.02.031
文献标志码:
A
摘要:
表情是人类情感在面部的表达方式,包含了诸多有用的人类情感和心理活动信息,而表情识别则是研究分析这些信息并进行正确分类的工作。目前,表情识别已成为互联网及相关行业的关注热点,在新兴的智能家居、情感机器人等方面具有较好的应用前景。为此,在分析已有研究成果的基础上,基于 Cohn-Kanade 库表情,选用卷积神经网络、支持向量机和 Adaboost 三类算法作为研
究对象,通过算法结构设计和参数优化分别得到三类算法相对较优的算法结构,并根据识别过程和识别结果进行了三类算法的对比分析。实验结果及其分析表明,卷积神经网络对 Cohn-Kanade 表情库的识别效果最好,而 Adaboost 的处理时间最短,支持向量机的识别效果介于两者之间;表情识别算法的研究及其性能分析为人脸表情识别的实际应用提供了有益的借鉴与参考。
 
Abstract:
As a expression of human emotions in face,emotion contains a lot of useful information about human emotions and mental activity.Emotional recognition is to be analysis of the information and classify them correctly.Presently,emotion recognition has become a new focus of Internet and related industries,which has a good application prospect in emerging smart home,emotional robots and others.Therefore,on the basis of analyzing existing research,the convolutional neural network,support vector machine and Adaboost are taken as object based on Cohn-Kanade expression library.The optimal structures of each algorithm are obtained respectively through design of algorithm structure and parameter optimization and a comparison on them is made according to the recognition process and recognition result.Experiment shows that convolutional neural network has the best recognition result,while Adaboost has the minimal processing time and support vector machines somewhere in between.Research and performance analysis of facial expression recognition algorithm provides a reference for the application of facial expression recognition.

相似文献/References:

[1]潘峥嵘,贺秀伟.人脸表情识别在智能机器人中的应用研究[J].计算机技术与发展,2018,28(02):173.[doi:10.3969/j.issn.1673-629X.2018.02.037]
 PAN Zheng-rong,HE Xiu-wei.Research on Application of Facial Expression Recognition in Intelligent Robot[J].,2018,28(02):173.[doi:10.3969/j.issn.1673-629X.2018.02.037]
[2]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].,2016,26(02):31.
[3]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(02):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[4]郭子琰,舒心,刘常燕,等.基于ReLU 函数的卷积神经网络的花卉识别算法[J].计算机技术与发展,2018,28(05):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
 GUO Ziyan,SHU Xin,LIU Changyan,et al.A Recognition Algorithm of Flower Based on Convolution Neural Network with ReLU Function[J].,2018,28(02):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
[5]缪宇杰,吴智钧,宫 婧.基于3D 卷积的视频错帧筛选方法[J].计算机技术与发展,2018,28(05):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
 MIAO Yu-jie,WU Zhi-jun,GONG Jing.A Wrong Temporal-order Frames Identification Method Based on 3D Convolution[J].,2018,28(02):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
[6]吴玉枝,吴志红,熊运余.基于卷积神经网络的小样本车辆检测与识别[J].计算机技术与发展,2018,28(06):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
 WU Yu-zhi,WU Zhi-hong,XIONG Yun-yu.Vehicle Detection and Recognition of a Few Samples Based on Convolutional Neural Network[J].,2018,28(02):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
[7]李相桥,李晨,田丽华,等.卷积神经网络并行训练的优化研究[J].计算机技术与发展,2018,28(08):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
 LI Xiang-qiao,LI Chen,TIAN Li-hua,et al.Research on Optimization of Parallel Training for Convolution Neural Network[J].,2018,28(02):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
[8]邓宗平,赵启军,陈虎. 基于深度学习的人脸姿态分类方法[J].计算机技术与发展,2016,26(07):11.
 DEND Zong-ping,ZHAO Qi-jun,CHEN Hu. Face Pose Classification Method Based on Deep Learning[J].,2016,26(02):11.
[9]河海大学 计算机与信息学院,江苏 南京 0098.卷积网络的无监督特征提取对人脸识别的研究[J].计算机技术与发展,2018,28(06):17.[doi:10.3969/ j. issn.1673-629X.2018.06.004]
 DU Bai-sheng.Research on Unsupervised Feature Extraction Based on Convolutional Neural Network for Face Recognition[J].,2018,28(02):17.[doi:10.3969/ j. issn.1673-629X.2018.06.004]
[10]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(02):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[11]付倩倩,李 昂.一种改进的卷积神经网络的表情识别算法[J].计算机技术与发展,2020,30(11):80.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 015]
 FU Qian-qian,LI Ang.An Improved Facial Expression Recognition Technology Based on Convolutional Neural Network[J].,2020,30(02):80.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 015]
[12]叶耀光,陈宗楠,陈丽群,等.基于通道注意的可变形金字塔表情识别网络[J].计算机技术与发展,2022,32(11):64.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 010]
 YE Yao-guang,CHEN Zong-nan,CHEN Li-qun,et al.Channel-attention-based Deformable Pyramid Network for Facial Expression Recognition[J].,2022,32(02):64.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 010]
[13]李 飞,陈 瑞,童 莹,等.基于增强特征和注意力机制的视频表情识别[J].计算机技术与发展,2022,32(11):183.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 027]
 LI Fei,CHEN Rui,TONG Ying,et al.Video Facial Expression Recognition Based on ECNN-SA[J].,2022,32(02):183.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 027]

更新日期/Last Update: 2018-03-29