[1]翟社平,李炀,马蒙雨,等. 基于LBP和SVM的人脸检测[J].计算机技术与发展,2017,27(09):44-47.
 ZHAI She-ping,LI Yang,MA Meng-yu,et al. Face Detection Based on LBP and SVM[J].,2017,27(09):44-47.
点击复制

 基于LBP和SVM的人脸检测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年09期
页码:
44-47
栏目:
智能、算法、系统工程
出版日期:
2017-09-10

文章信息/Info

Title:
 Face Detection Based on LBP and SVM
文章编号:
1673-629X(2017)09-0044-04
作者:
 翟社平李炀马蒙雨高山
 西安邮电大学 计算机学院
Author(s):
 ZHAI She-pingLI YangMA Meng-yuGAO Shan
关键词:
 人脸检测局部二元模式支持向量机特征提取人脸识别
Keywords:
 face detectionLBPSVMfeature extractionface recognition
分类号:
TP391.41
文献标志码:
A
摘要:
 人脸检测作为机器视觉研究的重要内容,在视频监控、安防等领域具有广泛的用途,是人脸识别技术的必备条件.针对复杂背景、光照不均匀等外部条件对人脸检测的影响,提出了基于局部二元模式(LBP)和支持向量机(SVM)的人脸检测算法.其中LBP是一种用来描述图像局部纹理特征的算子,具有旋转不变性和灰度不变性等显著的优点,其最主要的属性是对光照变化造成的灰度变化具有很好的鲁棒性.该算法使用LBP提取图像的特征值,并对提取到的LBP特征值使用SVM算法构建的分类器进行分类.实验结果表明,基于LBP和SVM的人脸检测算法具有很好的检测效果,不仅较好地解决了光照和复杂背景等外部条件对人脸检测的影响,而且明显提高了人脸检测的准确率,准确率可达到94%以上.
Abstract:
 As an important content of machine vision research, face detection is widely used in video surveillance, security and other fields,which is a prerequisite for face recognition technology. A face detection algorithm based on Local Binary Pattern ( LBP) and Sup-port Vector Machine ( SVM) is proposed to deal with the effects of complex background and illumination heterogeneity on face detec-tion. LBP is a kind of operator which is used to describe the local texture features of images with the advantages of rotation invariance and gray-scale invariance and its main property is that it is robust to the change of gray-scale. The algorithm uses LBP to extract the eigen-values of the image which is classified by the classifier built by SVM algorithm. Experimental results show that it has a good detection effect,not only solving the impact of illumination and complex background and other external conditions on the face detection,and signif-icantly improving the accuracy of face detection. The accuracy rate can reach more than 94%.

相似文献/References:

[1]李宏伟 陶亮.复杂背景不同光照条件下彩色图像中人脸检测[J].计算机技术与发展,2009,(02):52.
 LI Hong-wei,TAO Liang.Face Detection in Complicated Backgrounds and Different Illumination Conditions of Color Images[J].,2009,(09):52.
[2]俞扬信 严云洋.视频序列中的人脸检测与定位算法研究[J].计算机技术与发展,2009,(02):109.
 YU Yang-xin,YAN Yun-yang.Algorithm Study of Face Detection and Location in Video Sequence[J].,2009,(09):109.
[3]金燕 陶亮.基于人眼定位的人脸检测与归一化算法[J].计算机技术与发展,2009,(04):95.
 JIN Yan,TAO Liang.Face Detection and Normalization Based on Localization of Human Eyes[J].,2009,(09):95.
[4]佘九华 王敬东 李鹏.基于Camshift的人脸跟踪算法[J].计算机技术与发展,2008,(09):12.
 SHE Jiu-hua,WANG Jing-dong,LI Peng.Face Tracking Algorithm Based on Camshift[J].,2008,(09):12.
[5]李启娟 李金屏.基于轮廓信息的人脸检测[J].计算机技术与发展,2008,(09):108.
 LI Qi-juan,LI Jin-ping.Face Detection Based on Contour Information[J].,2008,(09):108.
[6]陈伟琦 梁一川 易强 秦文虎.基于肤色和Adaboost算法的人脸检测研究[J].计算机技术与发展,2008,(12):44.
 CHEN Wei-qi,LIANG Yi-chuan,YI Qiang,et al.Face Detection Based on Skin Color and Adaboost Arithmetic[J].,2008,(09):44.
[7]贾灵芝 李岚 钱坤喜.基于自适应光线补偿的人脸检测算法[J].计算机技术与发展,2008,(12):120.
 JIA Ling-zhi,LI Lan,QIAN Kun-xi.Face Detection Algorithm Based on Self- adaptive Light Compensation[J].,2008,(09):120.
[8]袁芬萍 季桂树.基于SVM的三阶段人脸检测方法的研究与应用[J].计算机技术与发展,2007,(09):133.
 YUAN Fen-ping,JI Gui-shu.Research and Application about Three- Stage Face Detection Method Based on SVM[J].,2007,(09):133.
[9]王晶 杨煜.基于边缘方向直方图的Adaboost人脸检测[J].计算机技术与发展,2007,(12):5.
 WANG Jing,YANG Yu.Adaboost for Face Detection Based on Edge Orientation Histograms[J].,2007,(09):5.
[10]邵平 杨路明 曾耀荣.计算旋转Harr型特征的积分图像算法改进[J].计算机技术与发展,2006,(11):146.
 SHAO Ping,YANG. Lu-ming,ZENG Yao-rong.An Improved Algorithm of Integral Image for Computing Rotated Harr- Like Features[J].,2006,(09):146.
[11]陈骁,金鑫. 基于级联Adaboost与示例投票的人脸检测[J].计算机技术与发展,2015,25(12):18.
 CHEN Xiao,JIN Xin. Face Detection Based on Cascade Adaboost and Exemplar Voting[J].,2015,25(09):18.
[12]裴向杰,唐红昇,陈鹏. 融合YCbCr肤色分割的不良图像检测算法研究[J].计算机技术与发展,2015,25(12):80.
 PEI Xiang-jie,TANG Hong-sheng,CHEN Peng. Research on Objectionable Image Detection Algorithm Based on YCbCr Skin Segmentation[J].,2015,25(09):80.
[13]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].,2016,26(09):31.
[14]欧阳杰臣[],黄曜[],高珏[],等. 基于Android人脸美化App的研究与实现[J].计算机技术与发展,2016,26(03):9.
 OUYANG Jie-chen[],HUANG Yao[],GAO Jue[],et al. Research and Implementation of Face Beautification App Based on Android[J].,2016,26(09):9.
[15]邵虹,耿昊. 基于肤色信息和模板匹配的人脸检测与提取[J].计算机技术与发展,2016,26(11):49.
 SHAO Hong,GENG Hao. Face Detection and Extraction Based on Skin-color Information and Template Matching[J].,2016,26(09):49.
[16]王攀,李少波. 基于肤色和FBLBP算法的人脸检测[J].计算机技术与发展,2017,27(01):44.
 WANG Pan,LI Shao-bo. Face Detection Based on Skin Color and FBLBP Algorithm[J].,2017,27(09):44.
[17]陈凡[],童莹[],曹雪虹[]. 复杂环境下基于视觉显著性的人脸目标检测[J].计算机技术与发展,2017,27(01):48.
 CHEN Fan[],TONG Ying[],CAO Xue-hong[]. Face Target Detection of Visual Saliency in Complex Environment[J].,2017,27(09):48.
[18]夏雪婷,胡正飞,潘玲云. 基于OpenCV人脸检测的室内照明自动控制系统[J].计算机技术与发展,2017,27(04):184.
 XIA Xue-ting,HU Zheng-fei,PAN Ling-yun. Indoor Automatic Lighting Control System with OpenCV Face Detection[J].,2017,27(09):184.

更新日期/Last Update: 2017-10-19