[1]常璐璐,张化朋. B超医学图像去噪模型的快速算法研究[J].计算机技术与发展,2017,27(03):57-60.
 CHANG Lu-lu,ZHANG Hua-peng. Investigation on Fast Algorithm for B Ultrasonic Medical Image Denoising Model[J].,2017,27(03):57-60.
点击复制

 B超医学图像去噪模型的快速算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年03期
页码:
57-60
栏目:
智能、算法、系统工程
出版日期:
2017-03-10

文章信息/Info

Title:
 Investigation on Fast Algorithm for B Ultrasonic Medical Image Denoising Model
文章编号:
1673-629X(2017)03-0057-04
作者:
 常璐璐张化朋
 南京邮电大学 理学院
Author(s):
 CHANG Lu-luZHANG Hua-peng
关键词:
 图像处理B超医学图像斑点噪声SplitBregman算法
Keywords:
 image processingB ultrasound medical imagespeckle noiseSplit Bregman algorithm
分类号:
TN911.73
文献标志码:
A
摘要:
 数字图像处理技术在人们的现实生活中具有广泛的应用.深入研究基于变分偏微分方程的B超医学图像的噪声去除问题,既能丰富医学图像的处理方法,促进人们对图像的深入理解,又能为基于超声医学图像的诊断治疗提供帮助.针对B超医学图像中斑点噪声的去除问题,根据Jin等对去除超声图像中的乘性噪声变分模型进行的研究,结合该变分模型解的框式制约和Split Bregman算法,提出了针对B超医学图像中斑点噪声变分模型的快速数值求解算法,并且分析了所提算法的收敛性.对测试图像进行了数值仿真实验,并将文中提出的新方法与现有的算法进行了比较.实验结果表明,采用文中算法是可行有效的,能够在去除B超医学图像中斑点噪声的同时极大地缩短运算的时间.
Abstract:
 Digital image processing technology has a wide range of applications in real life. B ultrasound medical image denoising problem is deeply studied based on variation and partial differential equation,which can not only make the method of medical image processing be rich,promotion of the deep understanding of the ultrasound image,but also be helpful for the diagnosis and treatment based on ultrasound image. For speckle noise removal problem of B ultrasound medical image,according to the study on the variational model of multiplica-tive noise in ultrasound images by Jin et al,combination of the frame type constraints of the model solution and the Split Bregman algo-rithm,a fast numerical algorithm is proposed for the variational model of removing the speckle noise in B ultrasound medical image,and its convergence is analyzed. The numerical simulation is carried out on the test image,and the new method is compared with the existing algorithm. The experimental results show that the algorithm proposed is feasible and effective,and the speckle noise in the B ultrasound medical image is removed and the computation time is greatly reduced.

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(03):125.
[2]张艳丽 保文星.粒子群优化算法在图像边缘检测中的研究应用[J].计算机技术与发展,2009,(05):26.
 ZHANG Yan-li,BAO Wen-xing.Research and Application of Image Edge Detection Based on PSO Algorithm[J].,2009,(03):26.
[3]詹金兰 李翠华.模拟实验系统的可视化研究[J].计算机技术与发展,2009,(05):228.
 ZHAN Jin-lan,LI Cui-hua.Visualization Research on Simulation Experiment System[J].,2009,(03):228.
[4]张家栋 张强 霍凯.图像处理在轴承荧光磁粉探伤中的应用研究[J].计算机技术与发展,2009,(08):216.
 ZHANG Jia-dong,ZHANG Qiang,HUO Kai.Study on Application of Image Processing in Bearing Fluorescent Magnetic Detection[J].,2009,(03):216.
[5]王文豪 张亚红 朱全银 单劲松.QR Code二维条形码的图像识别[J].计算机技术与发展,2009,(10):123.
 WANG Wen-hao,ZHANG Ya-hong,ZHU Quan-yin,et al.Image Recognition in 2 - D Bar Code Based on QR Code[J].,2009,(03):123.
[6]李孟歆 吴成东.粗糙集理论在图像处理中的应用[J].计算机技术与发展,2009,(03):208.
 LI Meng-xin,WU Cheng-dong.Rough Set Theory and Its Applications in Image Processing[J].,2009,(03):208.
[7]武彬.一种离焦模糊图像的复原方法[J].计算机技术与发展,2008,(01):74.
 WU Bin.A Method of Defocus Blurred Image Restoration[J].,2008,(03):74.
[8]蒋恩松 肖辉军 孙刘杰 熊清廉.基于机器视觉的套印误差自动检测系统设计[J].计算机技术与发展,2008,(07):173.
 JIANG En-song,XIAO Hui-jun,SUN Liu-jie,et al.Design of Automatic Detecting Printing Registration Deviation System Based on Machine Vision[J].,2008,(03):173.
[9]汪继文 林胜华 沈玉峰 邱剑锋.一种基于各向异性扩散的图像处理方法[J].计算机技术与发展,2008,(08):98.
 WANG Ji-wen,LIN Sheng-hua,SHEN Yu-feng,et al.An Approach for Image Restoration Based on Anisotropic Diffusion[J].,2008,(03):98.
[10]余志强 戎蒙恬 袁丹寿.一种用单端口SRAM构成的FIFO的ASIC设计[J].计算机技术与发展,2008,(09):159.
 YU Zhi-qiang,RONG Meng-tian,YUAN Dan-shou.ASIC Design of an FIFO Involving Single Port SRAM[J].,2008,(03):159.
[11]陈鹏宇[],孙文奇[],赵忠龙[]. 基于机器视觉的印刷质量检测研究[J].计算机技术与发展,2014,24(07):103.
 CHEN Peng-yu[],SUN Wen-qi[],ZHAO Zhong-long[]. rinting Quality Detection Based on Machine Vision[J].,2014,24(03):103.
[12]赵颖辉[][],蒋从锋[][]. 遥感影像的高性能并行处理技术研究[J].计算机技术与发展,2014,24(07):201.
 ZHAO Ying-hui[][],JIANG Cong-feng[][]. Research on High Performance Parallel Processing Technology for Remote Sensing Images[J].,2014,24(03):201.
[13]汤智超,苏琳,何超,等. 导盲机器人的交通标志视觉识别技术研究[J].计算机技术与发展,2014,24(09):23.
 TANG Zhi-chao,SU Lin,HEChao,et al. Research on Traffic Sign Visual Recognition Technology of Guiding Robot[J].,2014,24(03):23.
[14]孙全,刘政怡,吴国栋,等. 基于版面理解的选票软件设计[J].计算机技术与发展,2014,24(11):207.
 SUN Quan,LIU Zheng-yi,WU Guo-dong,et al. Design of Voting Software Based on Layout Understanding[J].,2014,24(03):207.
[15]蒋翠清,孙富亮,吴艿芯. 基于相对欧氏距离的背景差值法视频目标检测[J].计算机技术与发展,2015,25(01):37.
 JIANG Cui-qing,SUN Fu-liang,WU Nai-xin. Video Object Detection of Background Subtraction Method Based on Relative Euclidean Distance[J].,2015,25(03):37.
[16]程欢,杨庚. 地埋成像系统中图像冗余删除算法设计与实现[J].计算机技术与发展,2015,25(03):81.
 CHENG Huan,YANG Geng. Design and Implementation of Image Redundant and Deleting Algorithm in Ground Imaging System[J].,2015,25(03):81.
[17]路游,郭江涛,孟庆鑫. 基于Hausdorff距离的图像边缘检测方法[J].计算机技术与发展,2015,25(08):71.
 LU You,GUO Jiang-tao,MENG Qing-xin. A New Method of Edge Detection Based on Hausdorff Distance[J].,2015,25(03):71.
[18]苑玮琦,陈冰洁. 基于窗口提取的虹膜阳光放射沟检测方法研究[J].计算机技术与发展,2015,25(09):213.
 YUAN Wei-qi,CHEN Bing-jie. Research on Iris Radii Solaris Detection Method Based on Window Extraction[J].,2015,25(03):213.
[19]孙建[],李涛[],李雪丹[]. 基于PAAG的图形图像算法的并行实现[J].计算机技术与发展,2015,25(11):61.
 SUN Jian[],LI Tao[],LI Xue-dan[]. Parallel Implementation of Graphics Rendering and Image Processing Algorithm Based on PAAG[J].,2015,25(03):61.
[20]贺国旗[],陈向奎[],韩泉叶[],等. 一种自动提高图像信噪比的方法[J].计算机技术与发展,2015,25(12):60.
 HE Guo-qi[],CHEN Xiang-kui[],HAN Quan-ye[],et al. A Method of Automatically Improving SNR of Image[J].,2015,25(03):60.

更新日期/Last Update: 2017-05-12