[1]张应辉,司彩霞. 基于用户偏好和项目特征的协同过滤推荐算法[J].计算机技术与发展,2017,27(01):16-19.
 ZHANG Ying-hui,SI Cai-xia. A Collaborative Filtering Algorithm Based on Interest of User and Attributes of Item[J].,2017,27(01):16-19.
点击复制

 基于用户偏好和项目特征的协同过滤推荐算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年01期
页码:
16-19
栏目:
智能、算法、系统工程
出版日期:
2017-01-10

文章信息/Info

Title:
 A Collaborative Filtering Algorithm Based on Interest of User and Attributes of Item
文章编号:
1673-629X(2017)01-0016-04
作者:
 张应辉司彩霞
 东北大学 计算机科学与工程学院
Author(s):
 ZHANG Ying-huiSI Cai-xia
关键词:
 协同过滤推荐系统用户属性项目属性
Keywords:
 collaborative filteringrecommendation systemuser attributeitem attribute
分类号:
TP301.6
文献标志码:
A
摘要:
 采用对项目属性和用户行为的分析,为用户提供了一个有效的推荐资源解决方案(通过用户的兴趣偏好和项目的属性进行推荐)。对于用户而言,根据对用户注册时的显示属性和用户的历史行为记录(对项目资源的浏览、观看、下载、分享等操作)的分析,以及对用户历史行为的量化将用户划分为不同的近邻;对于项目而言,对项目也进行相似的操作即通过项目本身具有的属性和用户对项目的评价来将项目聚类分成不同的资源类型。以此对协同过滤算法进行改进,来改善推荐结果单一、评分矩阵数据不多、推荐准确性不高以及对新用户和新项目存在的冷启动问题。实现推荐资源随用户行为、兴趣的改变而动态改变,以满足用户需求,达到个性推荐的目的,避免用户在海量资源中为搜索资源而浪费时间。
Abstract:
 Using the analysis of project properties and user behavior provides the user with a valid solution recommended resources. It is recommended by the interest of the user and item’ s attributes. To the user,according to analysis of the user registration display attributes and the user’s behavior data (for browsing,viewing,downloading and sharing of project resources),as well as the quantization of the history of user behavior,the users could be divided into different neighbors. For the project,the clustering of project could divided into different resource types by its attributes and the evaluation of user to project. Therefore,the collaborative filtering algorithm is improved to solve the problems of single recommended results,little evaluation matrix data,low accuracy of recommendation as well as cold start for new users and new project. Recommended resources is achieved to change dynamically along with behavior and interest of users,to meet their requirements,achieving the purpose of the personalized recommendation,avoiding the waste of time for user to search resources in huge amounts of resources.

相似文献/References:

[1]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].,2010,(01):67.
[2]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(01):69.
[3]姜雅倩 王直杰 张珏.基于供求关系及协同过滤技术的推荐模型研究[J].计算机技术与发展,2007,(06):18.
 JIANG Ya-qian,WANG Zhi-jie,ZHANG Jue.Research on Recommendation Model Based on Supply and Demand Relation and Collaborative Filtering[J].,2007,(01):18.
[4]游文 叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,(09):70.
 YOU Wen,YE Shui-sheng.A Survey of Collaborative Filtering Algorithm Applied in E- commerce Recommender System[J].,2006,(01):70.
[5]徐红 彭黎 郭艾寅 徐云剑.基于用户多兴趣的协同过滤策略改进研究[J].计算机技术与发展,2011,(04):73.
 XU Hong,PENG Li,GUO Ai-yin,et al.User-Based Collaborative Filtering Strategies More Interested in Improvement of Research[J].,2011,(01):73.
[6]杨东风 牛永洁.基于混合规则的图书推荐模型设计与研究[J].计算机技术与发展,2011,(07):210.
 YANG Dong-feng,NIU Yong-jie.Books Recommended Model Design and Research Based on Mixing Rules[J].,2011,(01):210.
[7]吴月萍 王娜 马良.基于蚁群算法的协同过滤推荐系统的研究[J].计算机技术与发展,2011,(10):73.
 WU Yue-ping,WANG Na,MA Liang.Research of Collaboration Filtering Recommendation System Based on Ant Algorithm[J].,2011,(01):73.
[8]李克潮,蓝冬梅.一种属性和评分的协同过滤混合推荐算法[J].计算机技术与发展,2013,(07):116.
 LI Ke-chao,LAN Dong-mei.A Collaborative Filtering Hybrid Recommendation Algorithm for Attribute and Rating[J].,2013,(01):116.
[9]范虎,花伟伟.协同过滤推荐算法的研究与改进[J].计算机技术与发展,2013,(09):66.
 FAN Hu[],HUA Wei-wei[].Research and Improvement of Collaborative Filtering Recommendation Algorithm[J].,2013,(01):66.
[10]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[11]李振博,徐桂琼,査九. 基于用户谱聚类的协同过滤推荐算法[J].计算机技术与发展,2014,24(09):59.
 LI Zhen-bo,XU Gui-qiong,ZHA Jiu. A Collaborative Filtering Recommendation Algorithm Based on User Spectral Clustering[J].,2014,24(01):59.
[12]李荟,谢强,丁秋林. 一种基于情景的协同过滤推荐算法[J].计算机技术与发展,2014,24(10):42.
 LI Hui,XIEQiang,DING Qiu-lin. A Collaborative Filtering Recommendation Algorithm Based on Scenario[J].,2014,24(01):42.
[13]陈彦萍,王赛. 基于用户-项目的混合协同过滤算法[J].计算机技术与发展,2014,24(12):88.
 CHEN Yan-ping,WANG Sai. A Hybrid Collaborative Filtering Algorithm Based on User-item[J].,2014,24(01):88.
[14]王全民,苗雨,何明,等. 基于矩阵分解的协同过滤算法的并行化研究[J].计算机技术与发展,2015,25(02):55.
 ANG Quan-min,MIAO Yu,HE Ming,et al. Parallelized Research on Collaborative Filtering Algorithm Based on Matrix Factorization[J].,2015,25(01):55.
[15]程高伟,丁亦喆,吴振强. 结合用户评分和项目标签的协同过滤算法[J].计算机技术与发展,2015,25(03):71.
 CHENG Gao-wei,DING Yi-zhe,WU Zhen-qiang. Collaborative Filtering Algorithm Combined User Ratings with Item Tags[J].,2015,25(01):71.
[16]张晓琳,付英姿,褚培肖. 杰卡德相似系数在推荐系统中的应用[J].计算机技术与发展,2015,25(04):158.
 ZHANG Xiao-lin,FU Ying-zi,CHU Pei-xiao. Application of Jaccard Similarity Coefficient in Recommender System[J].,2015,25(01):158.
[17]查九,李振博,徐桂琼. 基于用户近邻约束的矩阵因子分解算法[J].计算机技术与发展,2015,25(06):1.
 ZHA Jiu,LI Zhen-bo,XU Gui-qiong. A Matrix Factorization Algorithm Based on User’ s Neighbors Regularized[J].,2015,25(01):1.
[18]周莹莹,王晓军. 利用离群点算法预处理协同过滤推荐系统数据[J].计算机技术与发展,2015,25(09):129.
 ZHOU Ying-ying,WANG Xiao-jun. Pre-filtering Data of Collaborative Filtering Recommendation System by Outliers Algorithm[J].,2015,25(01):129.
[19]王全民,王莉,曹建奇. 基于评论挖掘的改进的协同过滤推荐算法[J].计算机技术与发展,2015,25(10):24.
 WANG Quan-min,WANG Li,CAO Jian-qi. Improved Collaborative Filtering Recommendation Algorithm Based on Comments Mining[J].,2015,25(01):24.
[20]葛林涛,徐桂琼. 基于模糊C均值聚类有效性的协同过滤算法[J].计算机技术与发展,2016,26(01):22.
 E Lin-tao,XU Gui-qiong. A Collaborative Filtering Algorithm Based on Fuzzy C-means Clustering Validity[J].,2016,26(01):22.

更新日期/Last Update: 2017-04-01