[1]丘觐玮,余天尧,戴伟强,等. 基于遗传算法的LTE网络定位服务时延估计[J].计算机技术与发展,2016,26(05):149-152.
 QIU Jin-wei,YU Tian-yao,DAI Wei-qiang,et al. Time-delay Estimation of Positioning Service in LTE Networks Based on Genetic Algorithm[J].,2016,26(05):149-152.
点击复制

 基于遗传算法的LTE网络定位服务时延估计()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年05期
页码:
149-152
栏目:
应用开发研究
出版日期:
2016-05-10

文章信息/Info

Title:
 Time-delay Estimation of Positioning Service in LTE Networks Based on Genetic Algorithm
文章编号:
1673-629X(2016)05-0149-04
作者:
 丘觐玮余天尧戴伟强王宝全陆音
 南京邮电大学 电子科学与工程学院
Author(s):
 QIU Jin-weiYU Tian-yaoDAI Wei-qiangWANG Bao-quanLU Yin
关键词:
 遗传算法定位服务时延估计LTENLOS
Keywords:
 genetic algorithmpositioning servicetime-delay estimationLTENLOS
分类号:
TP301.6
文献标志码:
A
摘要:
 为降低NLOS环境对无线定位系统的干扰,文中提出了一种基于遗传算法的定位服务时延估计方案.该方案利用遗传算法启发性随机搜索的能力,求出NLOS环境下基站与移动台间的直视径时延.以各路径的到达时延以及到达角作为遗传算法的初始化信息,构建具有自适应性的适应度函数,通对目标函数求解得到直视径时延.仿真结果表明,该方案与传统的基于广义互相关的时延估计方案相比,可以有效降低NLOS环境下的环境噪声.在目标函数基本能够描述环境的前提下,遗传算法具有快速求解复杂环境下优势解的能力,可以满足各类依赖定位服务的应用对定位服务响应速度以及定位精度的要求.
Abstract:
 In order to reduce the interference of the NLOS environment to the wireless location system,a time-delay estimation scheme based on genetic algorithm is proposed. This scheme utilizes the characteristics of heuristic stochastic search ability of genetic algorithm, and the delay of LOS-path under NLOS environment can be obtained. Firstly,it uses the time of arrival and the angle of arrival as the o-riginal information in genetic algorithm. Secondly,according to the original information,it constructs an adaptive fitness function. Finally, the solution of the objective function is calculated,and the delay of LOS-path is obtained. The simulation shows that compared with the traditional time-delay estimation based on generalized cross correlation,the proposed scheme can effectively reduce the ambient noise un-der NLOS environment. On the premise of the objective function being able to describe the environment,genetic algorithm has the ability of fast solving the dominant solution under the complex environment,and it can meet the requirements of positioning service response speed and positioning accuracy for various kinds of position-service-based applications.

相似文献/References:

[1]冯智明,苏一丹,覃华,等.基于遗传算法的聚类与协同过滤组合推荐算法[J].计算机技术与发展,2014,24(01):35.
 FENG Zhi-ming,SU Yi-dan,QIN Hua,et al.Recommendation Algorithm of Combining Clustering with Collaborative Filtering Based on Genetic Algorithm[J].,2014,24(05):35.
[2]余晓光 严洪森 殷乾坤.基于Flexsim的车间调度优化[J].计算机技术与发展,2010,(03):44.
 YU Xiao-guang,YAN Hong-sen,YIN Qian-kun.Workshops Scheduling Optimization Based on Flexsim Simulation[J].,2010,(05):44.
[3]贺计文 宋承祥 刘弘.基于遗传算法的八数码问题的设计及实现[J].计算机技术与发展,2010,(03):105.
 HE Ji-wen,SONG Cheng-xiang,LIU Hong.Design and Implementation of Eight Puzzle Problem Based on Genetic Algorithms[J].,2010,(05):105.
[4]沈珏萍 庄亚明.基于Agent的二级供应链企业自动谈判研究[J].计算机技术与发展,2010,(03):121.
 SHEN Jue-ping,ZHUANG Ya-ming.A Research for Company Automatic Negotiation in Secondary Supply Chain Based on Agent[J].,2010,(05):121.
[5]张磊 王晓军.基于遗传算法的业务流程测试[J].计算机技术与发展,2010,(03):155.
 ZHANG Lei,WANG Xiao-jun.Test of Business Process Based on Genetic Algorithm[J].,2010,(05):155.
[6]曹道友 程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44.
 CAO Dao-you,CHENG Jia-xing.A Genetic Algorithm Based on Modified Selection Operator and Crossover Operator[J].,2010,(05):44.
[7]范维博 周俊 许正良.应用遗传算法求解第一类装配线平衡问题[J].计算机技术与发展,2010,(02):194.
 FAN Wei-bo,ZHOU Jun,XU Zheng-liang.Appication of Genetic Algorithm to Assembly Line Balancing[J].,2010,(05):194.
[8]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(05):9.
[9]余晓光 严洪森.基于禁忌搜索遗传混合算法的装配线平衡[J].计算机技术与发展,2010,(05):5.
 YU Xiao-guang,YAN Hong-sen.Assembly Line Balancing Based on Tabu Search and Genetic Hybrid Algorithm[J].,2010,(05):5.
[10]黄永聪 张旭[] 吴义纯 吴琦 程家兴.改进的径向基函数网络的研究及应用[J].计算机技术与发展,2010,(05):158.
 HUANG Yong-cong,ZHANG Xu,WU Yi-chun,et al.Research and Application of Improved Genetic Algorithm-Based RBFANN[J].,2010,(05):158.
[11]汤亚玲,黄华,程泽凯. 基于自适应遗传神经网络的银行客户分类研究[J].计算机技术与发展,2014,24(07):192.
 TANG Ya-ling,HUANG Hua,CHENG Ze-kai. Research on Classification of Bank Customers Based on Adaptive GA-BP Algorithm[J].,2014,24(05):192.
[12]赵礼峰,王小龙. 图的Steiner最小树问题的混合遗传算法[J].计算机技术与发展,2014,24(10):110.
 ZHAO Li-feng,WANG Xiao-long. Hybrid Genetic Algorithm of Graphical Steiner Tree Problem[J].,2014,24(05):110.
[13]杨思燕[],陈为胜[]. 基于数据同化的图像融合方法研究[J].计算机技术与发展,2014,24(11):69.
 YANG Si-yan[],CHEN Wei-sheng[]. Research on Image Fusion Method Based on Data Assimilation[J].,2014,24(05):69.
[14]李圆芳,樊玮. 基于遗传算法的航材库存控制优化模型[J].计算机技术与发展,2014,24(11):186.
 LI Yuan-fang,FAN Wei. Optimization Model of Aviation Spares Inventory Control Based on Genetic Algorithm[J].,2014,24(05):186.
[15]李利杰[],张君华[],熊伟清[],等. 一种改进的支持向量机模型优化算法[J].计算机技术与发展,2014,24(12):114.
 LI Li-jie[],ZHANG Jun-hua[],XIONG Wei-qing[],et al. An Improved Algorithm for Model Optimization of Support Vector Machine[J].,2014,24(05):114.
[16]唐启涛. 基于改进的遗传算法的智能组卷算法研究[J].计算机技术与发展,2014,24(12):241.
 TANG Qi-tao. Research on Intelligent Test Paper Generating Algorithm Based on Improved Genetic Algorithm[J].,2014,24(05):241.
[17]张方舟,王徐研,郝庆辉. 基于遗传分形编码的嵌入式小波图像编码算法[J].计算机技术与发展,2015,25(01):128.
 ZHANG Fang-zhou,WANG Xu-yan,HAO Qing-hui. Embedded Wavelet Image Coding Algorithm Based on a Genetic Fractal Coding [J].,2015,25(05):128.
[18]陈桂林,王生光,徐静妹,等. 基于GA和组合核的SVM入侵检测算法[J].计算机技术与发展,2015,25(02):148.
 CHEN Gui-lin,WANG Sheng-guang,XU Jing-mei,et al. Intrusion Detection Algorithm of SVM Based on GA and Composed Kernel Function[J].,2015,25(05):148.
[19]秦军[],戴新华[],童毅[],等. 基于MapReduce的SVM分类算法研究[J].计算机技术与发展,2015,25(06):87.
 QIN Jun[],DAI Xin-hua[],TONG Yi[],et al. Research on SVM Classification Algorithm Based on MapReduce[J].,2015,25(05):87.
[20]贺永兴[] [],杨瑞[],唐伟[],等. 基于重构变异算子遗传算法的研究[J].计算机技术与发展,2015,25(12):101.
 HE Yong-xing[][],YANG Rui[],TANG Wei[],et al. Research on Genetic Algorithm Based on Reconstruction Mutation Operator[J].,2015,25(05):101.

更新日期/Last Update: 2016-09-19