[1]张公让,万飞. 基于网格搜索的 SVM 在入侵检测中的应用[J].计算机技术与发展,2016,26(01):97-100.
 ZHANG Gong-rang,WAN Fei. Application of Support Vector Machine in Network Intrusion Detection Based on Grid Search[J].,2016,26(01):97-100.
点击复制

 基于网格搜索的 SVM 在入侵检测中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年01期
页码:
97-100
栏目:
安全与防范
出版日期:
2016-01-10

文章信息/Info

Title:
 Application of Support Vector Machine in Network Intrusion Detection Based on Grid Search
文章编号:
1673-629X(2016)01-0097-04
作者:
 张公让万飞
 合肥工业大学 管理学院
Author(s):
 ZHANG Gong-rangWAN Fei
关键词:
 入侵检测网络安全支持向量机网格搜索
Keywords:
 intrusion detectionnetwork securitysupport vector machinegrid search
分类号:
TP39
文献标志码:
A
摘要:
 随着网络的快速普及和发展,网络安全问题日益突出,如何保障网络安全已经成为一个国际化问题。在众多方法中,入侵检测技术是解决这一问题的有效手段。文中将支持向量机方法运用在入侵检测中。首先,介绍了基于 SVM 的入侵检测技术研究现状;然后,将网格搜索算法应用在 SVM 参数寻优中;最后,通过实验,将 PSO 算法、GA 算法、网格搜索算法对 SVM 参数优化的结果进行比较。实验结果表明,使用网格搜索法对 SVM 参数进行优化,具有最好的泛化精度,并且在此基础上,对数据集进行归一化处理,将大幅度减少构建分类器的迭代次数,从而减少预测时间。因此,可以认为基于网格搜索的支持向量机能够很好地实现入侵检测。
Abstract:
 With the rapid popularization and development of network,network security problems are becoming increasingly prominent. How to guarantee the security of the network has become an international problem. Among the many methods,intrusion detection technol-ogy is an effective means to solve this problem. In this paper,Support Vector Machine (SVM) method will be used in intrusion detec-tion. First of all,the current situation of the intrusion detection technology is introduced based on SVM. Secondly,the grid search algo-rithm is used into the optimization of the SVM’s parameters. At last,bring the result of the SVM’s parameters that based on PSO algo-rithm,GA algorithm and grid search algorithm into comparison. The results of the experiment show that using the grid search method for optimization of SVM’s parameters has the best generalized accuracy,and on this basis,the normalization of dataset will greatly reduce the number of the classifier’s iterations,so as to reduce the forecast time. Therefore,it is considered that SVM based on grid search can real-ize the intrusion detection excellently.

相似文献/References:

[1]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(01):143.
[2]马志远,曹宝香.改进的决策树算法在入侵检测中的应用[J].计算机技术与发展,2014,24(01):151.
 MA Zhi-yuan,CAO Bao-xiang.Application of Improved Decision Tree Algorithm in Intrusion Detection System[J].,2014,24(01):151.
[3]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(01):148.
[4]林英 张雁 欧阳佳.日志检测技术在计算机取证中的应用[J].计算机技术与发展,2010,(06):254.
 LIN Ying,ZHANG Yan,OU Yang-jia.Application of Log Testing Technology in Computer Forensics[J].,2010,(01):254.
[5]李钦 余谅.基于免疫遗传算法的网格入侵检测模型[J].计算机技术与发展,2009,(05):162.
 LI Qin,YU Liang.Grid Intrusion Detection Model Based on Immune Genetic Algorithm[J].,2009,(01):162.
[6]黄世权.网络存储安全分析[J].计算机技术与发展,2009,(05):170.
 HUANG Shi-quan.Analysis of Network Storage's Safety[J].,2009,(01):170.
[7]李睿 肖维民.基于孤立点挖掘的异常检测研究[J].计算机技术与发展,2009,(06):168.
 LI Rui,XIAO Wei-min.Research on Anomaly Intrusion Detection Based on Outlier Mining[J].,2009,(01):168.
[8]胡琼凯 黄建华.基于协议分析和决策树的入侵检测研究[J].计算机技术与发展,2009,(06):179.
 HU Oiong-kai,HUANG Jian-hua.Intrusion Detection Based on Protocol Analysis and Decision Tree[J].,2009,(01):179.
[9]汪世义.基于优化支持向量机的网络入侵检测技术研究[J].计算机技术与发展,2009,(07):177.
 WANG Shi-yi.Network Intrusion Detection Based on Improved Support Vector Machine[J].,2009,(01):177.
[10]薛俊 陈行 陶军.一种基于神经网络的入侵检测技术[J].计算机技术与发展,2009,(08):148.
 XUE Jun,CHEN Hang,TAO Jun.Technology of Intrusion Detection Based on Neural Network[J].,2009,(01):148.
[11]李蓉,周维柏. 基于多特征选取和类完全加权的入侵检测[J].计算机技术与发展,2014,24(07):145.
 LI Rong,ZHOU Wei-bai. Intrusion Detection Based on Multiple Feature Selection and Class Fully Weighted [J].,2014,24(01):145.
[12]李锋. 粒子群模糊聚类算法在入侵检测中的研究[J].计算机技术与发展,2014,24(12):138.
 LI Feng. Research on Fuzzy Clustering Algorithm Based on PSO in IDS[J].,2014,24(01):138.
[13]朱俚治. 一种基于误用检测的新算法[J].计算机技术与发展,2015,25(02):135.
 ZHU Li-zhi. A New Algorithm Based on Misuse Detection[J].,2015,25(01):135.
[14]陈桂林,王生光,徐静妹,等. 基于GA和组合核的SVM入侵检测算法[J].计算机技术与发展,2015,25(02):148.
 CHEN Gui-lin,WANG Sheng-guang,XU Jing-mei,et al. Intrusion Detection Algorithm of SVM Based on GA and Composed Kernel Function[J].,2015,25(01):148.
[15]刘华春,候向宁,杨忠. 基于改进K均值算法的入侵检测系统设计[J].计算机技术与发展,2016,26(01):101.
 LIU Hua-chun,HOU Xiang-ning,YANG Zhong. Design of Intrusion Detection System Based on Improved K-means Algorithm[J].,2016,26(01):101.
[16]何文河[],李陶深[][],黄汝维[][]. 云环境下基于改进BP算法的入侵检测模型[J].计算机技术与发展,2016,26(02):87.
 HE Wen-he[],LI Tao-shen[][],HUANG Ru-wei[][]. Intrusion Detection Model Based on Improved BP Algorithm in Cloud Environment[J].,2016,26(01):87.
[17]牛永洁,薛宁静. 改进的免疫克隆算法在入侵检测中的应用[J].计算机技术与发展,2016,26(05):86.
 NIU Yong-jie,XUE Ning-jing. Application of Improved Immune Clonal Selection Algorithm in Intrusion Detection[J].,2016,26(01):86.
[18]陈天宇,吴凡,马世杰,等. 基于CS和LS-SVM的入侵检测算法[J].计算机技术与发展,2016,26(05):99.
 CHEN Tian-yu,WU Fan,MA Shi-jie,et al. Intrusion Detection Algorithm Based on Compressed Sensing and Least Square Support Vector Machine[J].,2016,26(01):99.
[19]胡波. 基于簇的移动自组网的IDMEF数据模型设计[J].计算机技术与发展,2016,26(08):93.
 HU Bo. Design of Data Model Intrusion of Detection Message Exchange Format in Wireless Ad Hoc Networks Based on Clusters[J].,2016,26(01):93.
[20]曹耀彬,王亚刚. 免疫算法优化的RBF在入侵检测中的应用[J].计算机技术与发展,2017,27(06):114.
 CAO Yao-bin,WANG Ya-gang. Application of RBF Neural Network Optimized by Immune Algorithm in Intrusion Detection[J].,2017,27(01):114.

更新日期/Last Update: 2016-04-12