[1]路游,郭江涛,孟庆鑫. 基于Hausdorff距离的图像边缘检测方法[J].计算机技术与发展,2015,25(08):71-78.
 LU You,GUO Jiang-tao,MENG Qing-xin. A New Method of Edge Detection Based on Hausdorff Distance[J].,2015,25(08):71-78.
点击复制

 基于Hausdorff距离的图像边缘检测方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年08期
页码:
71-78
栏目:
智能、算法、系统工程
出版日期:
2015-08-10

文章信息/Info

Title:
 A New Method of Edge Detection Based on Hausdorff Distance
文章编号:
1673-629X(2015)08-0071-08
作者:
 路游郭江涛孟庆鑫
 中国石油大学 北京 地球物理与信息工程学院
Author(s):
 LU YouGUO Jiang-taoMENG Qing-xin
关键词:
 图像处理边缘检测Hausdorff距离特征图
Keywords:
 image processingedge detectionHausdorff distancefeature image
分类号:
TP391.41
文献标志码:
A
摘要:
 边缘检测方法大多基于一阶微分或二阶微分,但微分有局部属性。用Hausdorff距离可以从整体上检测边缘。首先对图像进行重采样,将图像拆分成两个集合,然后利用Hausdorff距离构造的边缘强度映射给两个集合的每个点赋值以获得特征图。由于图像边缘特征的局部性,先由边缘强度映射作用于子图获得局部特征图,再由局部特征图获得原图的特征图。最后给出一种利用特征图确定图像边缘的计算方法。通过实验可以看出,该方法能够获得单像素宽度边缘,并对线性边缘有很好的检出效果。
Abstract:
 Most edge detection methods are based on first-order or second-order differential,but these are local methods. Using Hausdorff distance to detect the edge of an image is a holistic method. Firstly,resample the image,and split the image into two sets,then get the fea-ture image by assigning a value for each point using the edge intensity mapping constructed by Hausdorff distance on the two sets. Since the edge features have local properties,in this paper,construct a map which can get local feature images using sub image and combine them into a feature image. Finally,a calculation method is given to get the edge image by feature image. It can be seen in experiment that this method can obtain the edge of a single pixel width,and have a good line-edge detection results.

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(08):125.
[2]张艳丽 保文星.粒子群优化算法在图像边缘检测中的研究应用[J].计算机技术与发展,2009,(05):26.
 ZHANG Yan-li,BAO Wen-xing.Research and Application of Image Edge Detection Based on PSO Algorithm[J].,2009,(08):26.
[3]詹金兰 李翠华.模拟实验系统的可视化研究[J].计算机技术与发展,2009,(05):228.
 ZHAN Jin-lan,LI Cui-hua.Visualization Research on Simulation Experiment System[J].,2009,(08):228.
[4]张家栋 张强 霍凯.图像处理在轴承荧光磁粉探伤中的应用研究[J].计算机技术与发展,2009,(08):216.
 ZHANG Jia-dong,ZHANG Qiang,HUO Kai.Study on Application of Image Processing in Bearing Fluorescent Magnetic Detection[J].,2009,(08):216.
[5]王文豪 张亚红 朱全银 单劲松.QR Code二维条形码的图像识别[J].计算机技术与发展,2009,(10):123.
 WANG Wen-hao,ZHANG Ya-hong,ZHU Quan-yin,et al.Image Recognition in 2 - D Bar Code Based on QR Code[J].,2009,(08):123.
[6]李孟歆 吴成东.粗糙集理论在图像处理中的应用[J].计算机技术与发展,2009,(03):208.
 LI Meng-xin,WU Cheng-dong.Rough Set Theory and Its Applications in Image Processing[J].,2009,(08):208.
[7]武彬.一种离焦模糊图像的复原方法[J].计算机技术与发展,2008,(01):74.
 WU Bin.A Method of Defocus Blurred Image Restoration[J].,2008,(08):74.
[8]蒋恩松 肖辉军 孙刘杰 熊清廉.基于机器视觉的套印误差自动检测系统设计[J].计算机技术与发展,2008,(07):173.
 JIANG En-song,XIAO Hui-jun,SUN Liu-jie,et al.Design of Automatic Detecting Printing Registration Deviation System Based on Machine Vision[J].,2008,(08):173.
[9]汪继文 林胜华 沈玉峰 邱剑锋.一种基于各向异性扩散的图像处理方法[J].计算机技术与发展,2008,(08):98.
 WANG Ji-wen,LIN Sheng-hua,SHEN Yu-feng,et al.An Approach for Image Restoration Based on Anisotropic Diffusion[J].,2008,(08):98.
[10]余志强 戎蒙恬 袁丹寿.一种用单端口SRAM构成的FIFO的ASIC设计[J].计算机技术与发展,2008,(09):159.
 YU Zhi-qiang,RONG Meng-tian,YUAN Dan-shou.ASIC Design of an FIFO Involving Single Port SRAM[J].,2008,(08):159.
[11]陈鹏宇[],孙文奇[],赵忠龙[]. 基于机器视觉的印刷质量检测研究[J].计算机技术与发展,2014,24(07):103.
 CHEN Peng-yu[],SUN Wen-qi[],ZHAO Zhong-long[]. rinting Quality Detection Based on Machine Vision[J].,2014,24(08):103.
[12]赵颖辉[][],蒋从锋[][]. 遥感影像的高性能并行处理技术研究[J].计算机技术与发展,2014,24(07):201.
 ZHAO Ying-hui[][],JIANG Cong-feng[][]. Research on High Performance Parallel Processing Technology for Remote Sensing Images[J].,2014,24(08):201.
[13]汤智超,苏琳,何超,等. 导盲机器人的交通标志视觉识别技术研究[J].计算机技术与发展,2014,24(09):23.
 TANG Zhi-chao,SU Lin,HEChao,et al. Research on Traffic Sign Visual Recognition Technology of Guiding Robot[J].,2014,24(08):23.
[14]孙全,刘政怡,吴国栋,等. 基于版面理解的选票软件设计[J].计算机技术与发展,2014,24(11):207.
 SUN Quan,LIU Zheng-yi,WU Guo-dong,et al. Design of Voting Software Based on Layout Understanding[J].,2014,24(08):207.
[15]蒋翠清,孙富亮,吴艿芯. 基于相对欧氏距离的背景差值法视频目标检测[J].计算机技术与发展,2015,25(01):37.
 JIANG Cui-qing,SUN Fu-liang,WU Nai-xin. Video Object Detection of Background Subtraction Method Based on Relative Euclidean Distance[J].,2015,25(08):37.
[16]程欢,杨庚. 地埋成像系统中图像冗余删除算法设计与实现[J].计算机技术与发展,2015,25(03):81.
 CHENG Huan,YANG Geng. Design and Implementation of Image Redundant and Deleting Algorithm in Ground Imaging System[J].,2015,25(08):81.
[17]苑玮琦,陈冰洁. 基于窗口提取的虹膜阳光放射沟检测方法研究[J].计算机技术与发展,2015,25(09):213.
 YUAN Wei-qi,CHEN Bing-jie. Research on Iris Radii Solaris Detection Method Based on Window Extraction[J].,2015,25(08):213.
[18]孙建[],李涛[],李雪丹[]. 基于PAAG的图形图像算法的并行实现[J].计算机技术与发展,2015,25(11):61.
 SUN Jian[],LI Tao[],LI Xue-dan[]. Parallel Implementation of Graphics Rendering and Image Processing Algorithm Based on PAAG[J].,2015,25(08):61.
[19]贺国旗[],陈向奎[],韩泉叶[],等. 一种自动提高图像信噪比的方法[J].计算机技术与发展,2015,25(12):60.
 HE Guo-qi[],CHEN Xiang-kui[],HAN Quan-ye[],et al. A Method of Automatically Improving SNR of Image[J].,2015,25(08):60.
[20]丁毅,李玉惠,李勃. 基于图像不同亮度区域特征的Gamma矫正方法[J].计算机技术与发展,2016,26(06):37.
 DING Yi,LI Yu-hui,LI Bo. Gamma Correction Based on Different Brightness Regional Features for Images[J].,2016,26(08):37.

更新日期/Last Update: 2015-09-11