[1]陈桂林,王生光,徐静妹,等. 基于GA和组合核的SVM入侵检测算法[J].计算机技术与发展,2015,25(02):148-151.
 CHEN Gui-lin,WANG Sheng-guang,XU Jing-mei,et al. Intrusion Detection Algorithm of SVM Based on GA and Composed Kernel Function[J].,2015,25(02):148-151.
点击复制

 基于GA和组合核的SVM入侵检测算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年02期
页码:
148-151
栏目:
智能、算法、系统工程
出版日期:
2015-02-10

文章信息/Info

Title:
 Intrusion Detection Algorithm of SVM Based on GA and Composed Kernel Function
文章编号:
1673-629X(2015)02-0148-04
作者:
 陈桂林王生光徐静妹李雷
 南京邮电大学
Author(s):
 CHEN Gui-linWANG Sheng-guangXU Jing-meiLI Lei
关键词:
 入侵检测核主成分分析法支持向量机遗传算法
Keywords:
 IDSKPCASVMGA
分类号:
TP301.6
文献标志码:
A
摘要:
 SVM有着很强的学习能力,已经成为入侵检测的重要算法之一。由于入侵检测原始数据量大,且具有高维性、冗余性等特点,导致传统SVM入侵检测算法计算量大、预测时间长。基于此,文中提出一种改进的SVM入侵检测算法( KP-CA-GA-LC-SVM)。文中利用核主成分分析法( KPCA)进行数据的特征提取,降低数据维数和计算量;使用两个核函数线性加权结合形成的组合核函数代替传统的单一核函数,并通过遗传算法( GA)进行SVM核参数及组合核权系数的寻优,来提高SVM性能。实验结果表明,文中算法有效地提高了入侵检测的检测精度。
Abstract:
 SVM has a strong learning ability,has become one of the most important intrusion detection algorithm. Due to a large amount of raw data in intrusion detection,and with a high dimension,redundancy,etc. ,result in larger of calculating the volume and the longer of predicted time in the traditional SVM intrusion detection algorithm. Based on this,propose an improved SVM intrusion detection algo-rithm ( KPCA-GA-LC-SVM) . In this paper,use Kernel Principal Component Analysis ( KPCA) for data feature extraction and reduce the dimensionality of data and computation. Use a combination of kernel functions formed by weighted linear combination of two kernel function instead of the traditional single kernel function,and through genetic algorithm to find the optimization of kernel parameters and the weights of the composed kernel function to improve the performance of SVM. The experimental results show that the improved algo-rithm can effectively improve the accuracy of intrusion detection.

相似文献/References:

[1]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(02):143.
[2]马志远,曹宝香.改进的决策树算法在入侵检测中的应用[J].计算机技术与发展,2014,24(01):151.
 MA Zhi-yuan,CAO Bao-xiang.Application of Improved Decision Tree Algorithm in Intrusion Detection System[J].,2014,24(02):151.
[3]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(02):148.
[4]林英 张雁 欧阳佳.日志检测技术在计算机取证中的应用[J].计算机技术与发展,2010,(06):254.
 LIN Ying,ZHANG Yan,OU Yang-jia.Application of Log Testing Technology in Computer Forensics[J].,2010,(02):254.
[5]李钦 余谅.基于免疫遗传算法的网格入侵检测模型[J].计算机技术与发展,2009,(05):162.
 LI Qin,YU Liang.Grid Intrusion Detection Model Based on Immune Genetic Algorithm[J].,2009,(02):162.
[6]黄世权.网络存储安全分析[J].计算机技术与发展,2009,(05):170.
 HUANG Shi-quan.Analysis of Network Storage's Safety[J].,2009,(02):170.
[7]李睿 肖维民.基于孤立点挖掘的异常检测研究[J].计算机技术与发展,2009,(06):168.
 LI Rui,XIAO Wei-min.Research on Anomaly Intrusion Detection Based on Outlier Mining[J].,2009,(02):168.
[8]胡琼凯 黄建华.基于协议分析和决策树的入侵检测研究[J].计算机技术与发展,2009,(06):179.
 HU Oiong-kai,HUANG Jian-hua.Intrusion Detection Based on Protocol Analysis and Decision Tree[J].,2009,(02):179.
[9]汪世义.基于优化支持向量机的网络入侵检测技术研究[J].计算机技术与发展,2009,(07):177.
 WANG Shi-yi.Network Intrusion Detection Based on Improved Support Vector Machine[J].,2009,(02):177.
[10]薛俊 陈行 陶军.一种基于神经网络的入侵检测技术[J].计算机技术与发展,2009,(08):148.
 XUE Jun,CHEN Hang,TAO Jun.Technology of Intrusion Detection Based on Neural Network[J].,2009,(02):148.
[11]李蓉,周维柏. 基于多特征选取和类完全加权的入侵检测[J].计算机技术与发展,2014,24(07):145.
 LI Rong,ZHOU Wei-bai. Intrusion Detection Based on Multiple Feature Selection and Class Fully Weighted [J].,2014,24(02):145.
[12]李锋. 粒子群模糊聚类算法在入侵检测中的研究[J].计算机技术与发展,2014,24(12):138.
 LI Feng. Research on Fuzzy Clustering Algorithm Based on PSO in IDS[J].,2014,24(02):138.
[13]朱俚治. 一种基于误用检测的新算法[J].计算机技术与发展,2015,25(02):135.
 ZHU Li-zhi. A New Algorithm Based on Misuse Detection[J].,2015,25(02):135.
[14]张公让,万飞. 基于网格搜索的 SVM 在入侵检测中的应用[J].计算机技术与发展,2016,26(01):97.
 ZHANG Gong-rang,WAN Fei. Application of Support Vector Machine in Network Intrusion Detection Based on Grid Search[J].,2016,26(02):97.
[15]刘华春,候向宁,杨忠. 基于改进K均值算法的入侵检测系统设计[J].计算机技术与发展,2016,26(01):101.
 LIU Hua-chun,HOU Xiang-ning,YANG Zhong. Design of Intrusion Detection System Based on Improved K-means Algorithm[J].,2016,26(02):101.
[16]何文河[],李陶深[][],黄汝维[][]. 云环境下基于改进BP算法的入侵检测模型[J].计算机技术与发展,2016,26(02):87.
 HE Wen-he[],LI Tao-shen[][],HUANG Ru-wei[][]. Intrusion Detection Model Based on Improved BP Algorithm in Cloud Environment[J].,2016,26(02):87.
[17]牛永洁,薛宁静. 改进的免疫克隆算法在入侵检测中的应用[J].计算机技术与发展,2016,26(05):86.
 NIU Yong-jie,XUE Ning-jing. Application of Improved Immune Clonal Selection Algorithm in Intrusion Detection[J].,2016,26(02):86.
[18]陈天宇,吴凡,马世杰,等. 基于CS和LS-SVM的入侵检测算法[J].计算机技术与发展,2016,26(05):99.
 CHEN Tian-yu,WU Fan,MA Shi-jie,et al. Intrusion Detection Algorithm Based on Compressed Sensing and Least Square Support Vector Machine[J].,2016,26(02):99.
[19]胡波. 基于簇的移动自组网的IDMEF数据模型设计[J].计算机技术与发展,2016,26(08):93.
 HU Bo. Design of Data Model Intrusion of Detection Message Exchange Format in Wireless Ad Hoc Networks Based on Clusters[J].,2016,26(02):93.
[20]曹耀彬,王亚刚. 免疫算法优化的RBF在入侵检测中的应用[J].计算机技术与发展,2017,27(06):114.
 CAO Yao-bin,WANG Ya-gang. Application of RBF Neural Network Optimized by Immune Algorithm in Intrusion Detection[J].,2017,27(02):114.

更新日期/Last Update: 2015-04-28