[1]李利杰[],张君华[],熊伟清[],等. 一种改进的支持向量机模型优化算法[J].计算机技术与发展,2014,24(12):114-117.
 LI Li-jie[],ZHANG Jun-hua[],XIONG Wei-qing[],et al. An Improved Algorithm for Model Optimization of Support Vector Machine[J].,2014,24(12):114-117.
点击复制

 一种改进的支持向量机模型优化算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年12期
页码:
114-117
栏目:
智能、算法、系统工程
出版日期:
2014-12-10

文章信息/Info

Title:
 An Improved Algorithm for Model Optimization of Support Vector Machine
文章编号:
1673-629X(2014)12-0114-04
作者:
 李利杰[1] 张君华[1] 熊伟清[2] 张颖[3]
 1.宁波城市职业技术学院;2.宁波大学 信息学院;3.宁波卫生职业技术学院
Author(s):
 LI Li-jie[1] ZHANG Jun-hua[1] XIONG Wei-qing[2] ZHANG Ying[3]
关键词:
 支持向量机模型选择主成分分析自学习遗传算法
Keywords:
 support vector machinemodel selectionprinciple component analysisself-learninggenetic algorithm
分类号:
TP18
文献标志码:
A
摘要:
 核函数与参数选择即模型优化是影响支持向量机泛化能力的主要因素。为提高支持向量机的泛化能力,文中在最优保存遗传算法的基础上引入学习算子和主成分分析方法,提出一种新的支持向量机模型优化新算法(简称PCA-SL-GA )解决支持向量机分类器模型自动优化问题。仿真实验结果表明,与用于支持向量机模型优化的隐马尔可夫、贪心算法、遗传编程等算法相比,PCA-SLGA算法具有快速收敛性和较强的全局搜索能力。实验进一步表明采用混合算法寻找最优核模型是一种可行途径。
Abstract:
 Model optimization,the choice of kernel functions and its parameters,has a profound impact on the generalization ability of the support vector machine.In this paper,to improve the generalization ability for SVM,a new kernel optimization algorithm (for short PCA-SLGA),based on the elitist of genetic algorithm,which adopts self-learning operator and principle component analysis method,is put forward in order to solve the problem of automatic optimization of VSM classifier model.Compared with the SVMs optimized by hidden Markov,greedy algorithm,genetic programming,the experimental results show that PCA-SLGA converge faster and has stronger global search ability than the algorithms mentioned above.The experiments further indicates that using the hybrid algorithm to optimize the ker-nel is a promising way to find the optimal kernel model.

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(12):125.
[2]陈俏 曹根牛 陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,(01):247.
 CHEN Qiao,CAO Gen-niu,CHEN Liu.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].,2010,(12):247.
[3]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(12):75.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(12):17.
[5]曹庆璞 董淑福 罗赟骞.网络时延的混沌特性分析及预测[J].计算机技术与发展,2010,(04):43.
 CAO Qing-pu,DONG Shu-fu,LUO Yun-qian.Chaotic Analysis and Prediction of Internet Time- Delay[J].,2010,(12):43.
[6]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(12):84.
[7]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(12):21.
[8]孙秋凤.microRNA计算识别中的模式识别技术[J].计算机技术与发展,2010,(06):97.
 SUN Qiu-feng.Pattern Recognition Technology for MicroRNA Identification[J].,2010,(12):97.
[9]刘振岩 王勇 陈立平 马俊杰 陈天恩.基于SVM的农业智能决策Web服务的研究与实现[J].计算机技术与发展,2010,(06):213.
 LIU Zhen-yan,WANG Yong,CHEN Li-ping,et al.Research and Implementation of Intelligence Decision Web Services Based on SVM for Digital Agriculture[J].,2010,(12):213.
[10]王李冬.一种新的人脸识别算法[J].计算机技术与发展,2009,(05):147.
 WANG Li-dong.A New Algorithm of Face Recognition[J].,2009,(12):147.
[11]吴家皋[][],余浩[] [],张雪英[]. 基于链接回溯的地理信息更新主题爬虫研究[J].计算机技术与发展,2014,24(07):52.
 WU Jia-gao[] [],YU Hao[] [],ZHANG Xue-ying[]. Study of Topic-driven Web Crawler for Geographic Information Updating Based on Link Backtracking[J].,2014,24(12):52.
[12]李雷,魏蕴婕. 结合模糊聚类与支持向量机的图像分割[J].计算机技术与发展,2014,24(07):88.
 LI Lei,WEI Yun-jie. Image Segmentation Combined FCM and SVM[J].,2014,24(12):88.
[13]李燕玲,苏一丹. 改进的二叉树支持向量机在多分类中的应用[J].计算机技术与发展,2014,24(07):181.
 LI Yan-ling,SU Yi-dan. Application of Improved Binary Tree Support Vector Machine in Multi-classification[J].,2014,24(12):181.
[14]李春生[],苏晓伟[],魏军[],等. 基于支持向量机的抽油机井功图识别研究[J].计算机技术与发展,2014,24(08):215.
 LI Chun-sheng[],SU Xiao-wei[],WEI Jun[],et al. Research on Diagrams Identification of Pumping Unit Based on Support Vector Machine[J].,2014,24(12):215.
[15]李妍坊,许歆艺,刘功申. 面向情感倾向性识别的特征分析研究[J].计算机技术与发展,2014,24(09):33.
 LI Yan-fang,XU Xin-yi,LIU Gong-shen. Research on Feature Analysis Oriented Text Sentiment Identification[J].,2014,24(12):33.
[16]鄂旭[] [],毕佳娜[],侯建[],等. 一种车牌智能定位方法研究[J].计算机技术与发展,2014,24(10):124.
 E Xu[] [],BI Jia-na[],HOU Jian[],et al. Research on a License Plate Intelligent Localization Method[J].,2014,24(12):124.
[17]陈桂林,王生光,徐静妹,等. 基于GA和组合核的SVM入侵检测算法[J].计算机技术与发展,2015,25(02):148.
 CHEN Gui-lin,WANG Sheng-guang,XU Jing-mei,et al. Intrusion Detection Algorithm of SVM Based on GA and Composed Kernel Function[J].,2015,25(12):148.
[18]李琼,陈利. 一种改进的支持向量机文本分类方法[J].计算机技术与发展,2015,25(05):78.
 LI Qiong CHEN Li. An Improved Text Classification Method for Support Vector Machine[J].,2015,25(12):78.
[19]贾慧敏. 基于ML改进技术的IDS的设计与实现[J].计算机技术与发展,2015,25(06):114.
 JIA Hui-min. Design and Implementation of IDS Based on ML’ s Improved Technology[J].,2015,25(12):114.
[20]刘凌,郭剑,韩崇. 面向不平衡数据的模糊支持向量机[J].计算机技术与发展,2015,25(11):38.
  Fuzzy Support Vector Machine for Imbalanced Data[J].,2015,25(12):38.

更新日期/Last Update: 2015-04-15