[1]李正浩,刘学军. 一种基于贝叶斯网络的作战重心评估模型[J].计算机技术与发展,2014,24(09):50-53.
 LI Zheng-hao,LIU Xue-jun. An Evaluation Model of Center of Gravity Based on Bayesian Network[J].,2014,24(09):50-53.
点击复制

 一种基于贝叶斯网络的作战重心评估模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年09期
页码:
50-53
栏目:
智能、算法、系统工程
出版日期:
2014-09-10

文章信息/Info

Title:
 An Evaluation Model of Center of Gravity Based on Bayesian Network
文章编号:
1673-629X(2014)09-0050-04
作者:
 李正浩刘学军
 南京航空航天大学 计算机科学与技术学院
Author(s):
 LI Zheng-haoLIU Xue-jun
关键词:
 贝叶斯网络精确推理作战重心评估联合树算法
Keywords:
 Bayesian networkexact inferenceCOG evaluationclique tree algorithm
分类号:
TP31
文献标志码:
A
摘要:
 作战重心( Center of Gravity)是指战役体系中敌我双方的关键环节。作战重心评估是一个经验性、模糊性的过程。贝叶斯网络作为一种不确定知识表示模型,具有概率论及图论基础,对于解决复杂系统决策问题具有较强的优势,适合用于作战重心评估。文中提出并实现了一种基于贝叶斯网络推理的作战重心评估模型。通过该模型,可以定量地评估各个环节对于证据的重要程度,从而确定该作战过程中的作战重心。文中使用联合树( Clique Tree)算法进行贝叶斯网络精确推理,并详细阐述了推理过程中联合树建立,消息传递的过程。最后通过实例验证,基于贝叶斯网络推理的模型能够有效地对作战重心进行定量的评估。
Abstract:
 Center Of Gravity ( COG) is the key to a campaign. Center of gravity evaluation is an empirical and fuzzy process. Bayesian Networks ( BN) ,as a representation model for uncertain knowledge,is based on probability theory and graph theory,with strong advanta-ges for solving the complex system decision problem,which is suitable for COG evaluation. Propose and implement a COG evaluation model based on Bayesian network inference. Through this model,can evaluate the importance of each step for evidence quantitatively,de-termining the COG in the combat process. Use clique tree algorithm to perform Bayesian network inference and elaborate the ways to build the clique tree and to process message delivering in detail. An experiment is used to verify the proposed model. Results show that the proposed method can perform COG evaluation effectively and quantitatively.

相似文献/References:

[1]宫义山 高媛媛.基于信息融合的诊断贝叶斯网络研究[J].计算机技术与发展,2009,(06):106.
 GONG Yi-shan,GAO Yuan-yuan.Diagnostic Bayesian Networks Research Based on Information Fusion[J].,2009,(09):106.
[2]奚海荣 马文丽 梁斌.基于贝叶斯网络SP算法的改进研究[J].计算机技术与发展,2009,(03):155.
 XI Hai-rong,MA Wen-li,LIANG Bin.Improvement of SP Algorithm Based on Bayesian Networks[J].,2009,(09):155.
[3]王峻 周孟然.一种基于MDL度量的选择性扩展贝叶斯分类器[J].计算机技术与发展,2007,(07):35.
 WANG Jun,ZHOU Meng-ran.A Selective Augmented Naive Bayesian Classifier Based on MDL Score[J].,2007,(09):35.
[4]程泽凯.基于TAN结构的启发式贝叶斯网络结构学习算法[J].计算机技术与发展,2007,(08):61.
 CHENG Ze-kai.BN Structure Learning Heuristic Algorithm Based on TAN Structure[J].,2007,(09):61.
[5]蒋望东 林士敏 鲁明羽[].基于BIC测度和混合遗传算法的BNC结构学习[J].计算机技术与发展,2007,(03):84.
 JIANG Wang-dong,LIN Shi-min,LU Ming-yu.Structure Learning of BNC Based on BIC and Hybrid Genetic Algorithms[J].,2007,(09):84.
[6]孙笑微 赵大宇 李晓毅 唐恒永.用于数据挖掘的TAN分类器的研究与应用[J].计算机技术与发展,2006,(11):140.
 suN Xiao-wei,ZHAO Da-yu,LI Xiao-yi,et al.Study and Application of TAN Classifier for Data Mining[J].,2006,(09):140.
[7]钟仕群 朱程荣 熊齐邦.一种基于贝叶斯网络的集成的故障定位模型[J].计算机技术与发展,2006,(12):13.
 ZHONG Shi-qun,ZHU Cheng-rong,XIONG Qi-bang.An Integrated Fault Localization Model Based on Bayesian Networks[J].,2006,(09):13.
[8]潘晓东[] 王春江 黄镇鸿 张国辉[].作战重心建模中的条件概率生成方法研究[J].计算机技术与发展,2011,(04):56.
 PAN Xiao-dong,WANG Chun-jiang,HUANG Zhen-hong,et al.Research on Method of Generating Conditional Probabilities in COG Modeling[J].,2011,(09):56.
[9]洪海燕.基于贝叶斯分类器的简历筛选模型[J].计算机技术与发展,2012,(07):85.
 HONG Hai-yan.Screening of Resumes Based on Bayesian Classifier[J].,2012,(09):85.
[10]吴绍兵.基于贝叶斯网络的信息提取技术研究[J].计算机技术与发展,2012,(11):225.
 WU Shao-bing.Research of Information Extraction Technique Based on Bayesian Network[J].,2012,(09):225.
[11]崔鹏帅,朱浩洋,任浩. 基于分层模型的组合服务故障定位算法[J].计算机技术与发展,2014,24(09):6.
 CUI Peng-shuai,ZHU Hao-yang,REN Hao. A Fault Location Algorithm of Composition Service Based on Hierarchical Model[J].,2014,24(09):6.
[12]肖旭,慕德俊,张慧翔,等. GPU加速的贝叶斯网络精确推理方法研究[J].计算机技术与发展,2014,24(10):1.
 XIAO Xu,MU De-jun,ZHANG Hui-xiang,et al. Research on Bayesian Network’s Exact Inference Using GPU Acceleration[J].,2014,24(09):1.
[13]王巍. 基于云参数贝叶斯网络的威胁评估方法[J].计算机技术与发展,2016,26(06):106.
 WANG Wei. An Threat Assessment Method Based on Cloud Parameters Bayesian Network[J].,2016,26(09):106.
[14]刘栋,宁玉富. 事件关联在证据链构造中的研究[J].计算机技术与发展,2016,26(12):107.
 LIU Dong,NING Yu-fu. Research on Event Correlation in Construction of Evidence Chain[J].,2016,26(09):107.
[15]林青[],戴慧珺[],任德旺[]. 基于贝叶斯网络的量化信任评估方法[J].计算机技术与发展,2016,26(12):132.
 LIN Qing[],DAI Hui-jun[],REN De-wang[]. A Quantitative Trust Assessment Method Based on Bayesian Network[J].,2016,26(09):132.
[16]高晓利[],李捷[][]. 基于模糊变结构动态贝叶斯网的目标识别方法[J].计算机技术与发展,2017,27(09):17.
 GAO Xiao-li[],LI Jie[][]. A Target Identification Method of Dynamic Bayesian Network with Fuzzy Variable Structure[J].,2017,27(09):17.

更新日期/Last Update: 2015-04-01