[1]李燕玲,苏一丹. 改进的二叉树支持向量机在多分类中的应用[J].计算机技术与发展,2014,24(07):181-184.
 LI Yan-ling,SU Yi-dan. Application of Improved Binary Tree Support Vector Machine in Multi-classification[J].,2014,24(07):181-184.
点击复制

 改进的二叉树支持向量机在多分类中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年07期
页码:
181-184
栏目:
应用开发研究
出版日期:
2014-07-10

文章信息/Info

Title:
 Application of Improved Binary Tree Support Vector Machine in Multi-classification
文章编号:
1673-629X(2014)07-0181-04
作者:
 李燕玲苏一丹
 广西大学 计算机与电子信息学院
Author(s):
 LI Yan-lingSU Yi-dan
关键词:
 支持向量机多分类二叉树超球体
Keywords:
 support vector machinemulti-classificationbinary treehypersphere
分类号:
TP39
文献标志码:
A
摘要:
 在多分类问题中,分类算法的优劣直接影响到最终分类结果的好坏。现有的多分类算法中,基于支持向量机的多分类算法在综合性能方面要优于其他算法,但是,这些较优算法同样面临一些多分类中常见的问题,如不可分问题和效率低问题。针对这些问题,文中提出了一种改进的二叉树支持向量机多分类算法,该算法综合考虑了两个类之间的距离和分布情况对可分离性的影响,并采用最容易分离的类最先分割出来的策略来建立树的结构。通过在不同的数据集上进行测试,表明该方法不仅解决了多分类的不可分问题,还能提高分类的效率和准确度,可更好地解决现实中的多分类问题。
Abstract:
 The quality of algorithms has directly impacted on the final classification results in multi-class classification. In current algo-rithms for multi-classification,those which are based on Support Vector Machine ( SVM) have better comprehensive performance than others. But they also face some common problems,such as unclassifiable regions and low efficiency. For these problems,a modified bina-ry tree SVM multi-classification algorithm which is based on the effect of distance and distribution of classes to inter-class separability is proposed,using the strategy of the easiest class to separate for the first partition to establish the structure of the tree. Tests in different data sets show that this method can not only solve the unclassifiable regions,but also can improve the efficiency and accuracy of classification.

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(07):125.
[2]陈俏 曹根牛 陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,(01):247.
 CHEN Qiao,CAO Gen-niu,CHEN Liu.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].,2010,(07):247.
[3]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(07):75.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(07):17.
[5]曹庆璞 董淑福 罗赟骞.网络时延的混沌特性分析及预测[J].计算机技术与发展,2010,(04):43.
 CAO Qing-pu,DONG Shu-fu,LUO Yun-qian.Chaotic Analysis and Prediction of Internet Time- Delay[J].,2010,(07):43.
[6]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(07):84.
[7]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(07):21.
[8]孙秋凤.microRNA计算识别中的模式识别技术[J].计算机技术与发展,2010,(06):97.
 SUN Qiu-feng.Pattern Recognition Technology for MicroRNA Identification[J].,2010,(07):97.
[9]刘振岩 王勇 陈立平 马俊杰 陈天恩.基于SVM的农业智能决策Web服务的研究与实现[J].计算机技术与发展,2010,(06):213.
 LIU Zhen-yan,WANG Yong,CHEN Li-ping,et al.Research and Implementation of Intelligence Decision Web Services Based on SVM for Digital Agriculture[J].,2010,(07):213.
[10]王李冬.一种新的人脸识别算法[J].计算机技术与发展,2009,(05):147.
 WANG Li-dong.A New Algorithm of Face Recognition[J].,2009,(07):147.
[11]吴家皋[][],余浩[] [],张雪英[]. 基于链接回溯的地理信息更新主题爬虫研究[J].计算机技术与发展,2014,24(07):52.
 WU Jia-gao[] [],YU Hao[] [],ZHANG Xue-ying[]. Study of Topic-driven Web Crawler for Geographic Information Updating Based on Link Backtracking[J].,2014,24(07):52.
[12]李雷,魏蕴婕. 结合模糊聚类与支持向量机的图像分割[J].计算机技术与发展,2014,24(07):88.
 LI Lei,WEI Yun-jie. Image Segmentation Combined FCM and SVM[J].,2014,24(07):88.
[13]李春生[],苏晓伟[],魏军[],等. 基于支持向量机的抽油机井功图识别研究[J].计算机技术与发展,2014,24(08):215.
 LI Chun-sheng[],SU Xiao-wei[],WEI Jun[],et al. Research on Diagrams Identification of Pumping Unit Based on Support Vector Machine[J].,2014,24(07):215.
[14]李妍坊,许歆艺,刘功申. 面向情感倾向性识别的特征分析研究[J].计算机技术与发展,2014,24(09):33.
 LI Yan-fang,XU Xin-yi,LIU Gong-shen. Research on Feature Analysis Oriented Text Sentiment Identification[J].,2014,24(07):33.
[15]鄂旭[] [],毕佳娜[],侯建[],等. 一种车牌智能定位方法研究[J].计算机技术与发展,2014,24(10):124.
 E Xu[] [],BI Jia-na[],HOU Jian[],et al. Research on a License Plate Intelligent Localization Method[J].,2014,24(07):124.
[16]李利杰[],张君华[],熊伟清[],等. 一种改进的支持向量机模型优化算法[J].计算机技术与发展,2014,24(12):114.
 LI Li-jie[],ZHANG Jun-hua[],XIONG Wei-qing[],et al. An Improved Algorithm for Model Optimization of Support Vector Machine[J].,2014,24(07):114.
[17]陈桂林,王生光,徐静妹,等. 基于GA和组合核的SVM入侵检测算法[J].计算机技术与发展,2015,25(02):148.
 CHEN Gui-lin,WANG Sheng-guang,XU Jing-mei,et al. Intrusion Detection Algorithm of SVM Based on GA and Composed Kernel Function[J].,2015,25(07):148.
[18]李琼,陈利. 一种改进的支持向量机文本分类方法[J].计算机技术与发展,2015,25(05):78.
 LI Qiong CHEN Li. An Improved Text Classification Method for Support Vector Machine[J].,2015,25(07):78.
[19]贾慧敏. 基于ML改进技术的IDS的设计与实现[J].计算机技术与发展,2015,25(06):114.
 JIA Hui-min. Design and Implementation of IDS Based on ML’ s Improved Technology[J].,2015,25(07):114.
[20]刘凌,郭剑,韩崇. 面向不平衡数据的模糊支持向量机[J].计算机技术与发展,2015,25(11):38.
  Fuzzy Support Vector Machine for Imbalanced Data[J].,2015,25(07):38.

更新日期/Last Update: 2015-03-16