[1]董敏[],阎镇.基于CUDA的航天遥感图像实时快视系统的研究[J].计算机技术与发展,2014,24(06):32-35.
 DONG Min[][][],YAN Zhen[].Research on Aerospace Remote Sensing Images Real-time Quick-view System Based on CUDA[J].,2014,24(06):32-35.
点击复制

基于CUDA的航天遥感图像实时快视系统的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年06期
页码:
32-35
栏目:
智能、算法、系统工程
出版日期:
2014-06-30

文章信息/Info

Title:
Research on Aerospace Remote Sensing Images Real-time Quick-view System Based on CUDA
文章编号:
1673-629X(2014)06-0032-04
作者:
董敏12[3]阎镇2
1.中国科学院 光电研究院;2.中国科学院 空间应用工程与技术中心;3中国科学院大学
Author(s):
DONG Min[1][2][3]YAN Zhen[2]
关键词:
CUDA遥感图像GPU实时快视系统
Keywords:
CUDAsensing imageGPUreal-time quick-view system
分类号:
TP399
文献标志码:
A
摘要:
随着实践中航天下行数据速率和类型的剧增,地面遥感图像实时快视系统需要有更强的数据处理能力和更好的显示效果。对于大批量的数据,采用传统的中央处理器( CPU)进行数据处理耗时较长,而且滞后严重。为了解决这个问题,文中提出向实时快视系统中引入CUDA平台的方案,利用GPU强大的通用计算能力加速图像数据的解析和显示。利用这项技术,可以获得数倍于传统CPU处理方案的效率,并且可以优化显示效果,而且随着硬件设备的升级,效率还可以得到进一步的提升。
Abstract:
With the rapid growth of space downlink data rate and type,ground sensing imaging real-time quick-view system requires fas-ter processing power and better display effect. For large amounts of image data,the traditional method of data process conducted by CPU will cost too much time and have a great hysteresis. To solve the problem,present a method of introducing the CUDA platform to the real-time quick-view system,accelerating the process and display of image data by means of great computing capacity of GPU. With this method,the system can achieve a processing speed several times faster than traditional processing method by CPU,which makes the real-time image display better. In addition to this,it can get higher efficiency with the promotion of hardware.

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(06):36.
[2]赵艳飞 高清维 卢一相.基于多尺度Retinex算法的遥感图像增强[J].计算机技术与发展,2008,(02):70.
 ZHAO Yan-fei,GAO Qing-wei,LU Yi-xiang.Remote Sensing Image Enhancement Based on Multi- Scale Retinex Algorithm[J].,2008,(06):70.
[3]陈昌生 许文波 赵健.基于ArcSDE的卫星遥感影像数据库研究[J].计算机技术与发展,2010,(07):80.
 CHEN Chang-sheng,XU Wen-bo,ZHAO Jian.Research on Remote Sensing Image Database Based on ArcSDE[J].,2010,(06):80.
[4]李晓飞 马大玮 范小麟 胡焰智.基于数学形态学的遥感图像多感兴趣区域提取[J].计算机技术与发展,2007,(12):56.
 LI Xiao-fei,MA Da-wei,FAN Xiao-lin,et al.Extraction of ROIs Based on Mathematical Morphology toward Applications on Remote Sense Image Processing[J].,2007,(06):56.
[5]张衡 唐杰 武港山.利用CUDA快速计算三角网格模型简化误差[J].计算机技术与发展,2011,(07):1.
 ZHANG Heng,TANG Jie,WU Gang-shan.Fast Calculating Simplification Error of Triangular Mesh Using CUDA[J].,2011,(06):1.
[6]凌瞳 赵昕 侯哲 汪凯巍 白剑.基于CUDA的快速全景环带图像展开[J].计算机技术与发展,2011,(11):23.
 LING Tong,ZHAO Xin,HOU Zhe,et al.Fast Panoramic Annular Image Stretching Based on CUDA[J].,2011,(06):23.
[7]魏强 唐杰.基于CUDA的地震数据层位面自动追踪算法[J].计算机技术与发展,2012,(09):1.
 WEI Qiang,TANG Jie.CUDA-based Automatic Seismic Horizon Tracking Algorithm[J].,2012,(06):1.
[8]张亚亚,张立民,刘小伟,等. 基于语义网的遥感图像分类[J].计算机技术与发展,2015,25(05):218.
 ZHANG Ya-ya,ZHANG Li-min,LIU Xiao-wei,et al. Remote Sensing Image Classification Based on Semantic-net[J].,2015,25(06):218.
[9]黄涛[][],薛丰昌[],钱洪亮[],等. 基于 NSCT 和自适应模糊阈值遥感图像去噪算法[J].计算机技术与发展,2016,26(01):65.
 HUANG Tao[][],XUE Feng-chang[],QIAN Hong-liang[],et al. Remote Sensing Image Denoising Algorithm Based on NSCT and Adaptive Fuzzy Threshold[J].,2016,26(06):65.
[10]龚林松,李士进.基于改进的SLIC和OTSU的遥感影像水体提取[J].计算机技术与发展,2019,29(01):145.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 030]
 GONG Lin-song,LI Shi-jin.Water Information Extraction from Remote Sensing Imagery Based onImproved SLIC and OTSU[J].,2019,29(06):145.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 030]

更新日期/Last Update: 1900-01-01