[1]何伟山,秦亮曦.一种改进QPSO优化BP网络的入侵检测算法[J].计算机技术与发展,2013,(12):147-150.
 HE Wei-shan,QIN Liang-xi.An Intrusion Detection Algorithm of BP Network Optimized by Improved QPSO[J].,2013,(12):147-150.
点击复制

一种改进QPSO优化BP网络的入侵检测算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年12期
页码:
147-150
栏目:
安全与防范
出版日期:
1900-01-01

文章信息/Info

Title:
An Intrusion Detection Algorithm of BP Network Optimized by Improved QPSO
文章编号:
1673-629X(2013)12-0147-04
作者:
何伟山秦亮曦
广西大学 计算机与电子信息学院
Author(s):
HE Wei-shanQIN Liang-xi
关键词:
入侵检测BP神经网络量子粒子群优化变异操作自适应变异量子粒子群
Keywords:
intrusion detectionBP neural networkquantum particle swarm optimizationmutation operationadaptive mutation quantum particle swarm
文献标志码:
A
摘要:
为了较好克服量子粒子群算法存在早熟收敛的缺点,在分析算法参数和流程的基础上,提出了一种带变异操作的改进量子粒子群优化算法。针对传统BP算法易于陷入局部极小的不足,将改进的算法应用到BP神经网络的学习过程中,修正BP网络的权值和阈值,提高其收敛性能。并将优化的BP神经网络模型应用于入侵检测中,用标准入侵检测数据对基于不同算法的BP网络进行仿真实验比较。实验结果表明,改进后的BP算法迭代次数少,收敛速度有所提高,在一定程度上提高了入侵检测率
Abstract:
In order to overcome the shortcomings of the quantum particle swarm optimization algorithm better,which is precocious conver-gence,on the basis of analyzing algorithm parameters and processes,an improved quantum particle swarm optimization algorithm with mutation operation has been proposed. Because the traditional BP algorithm is easy to fall into local minima,the improved algorithm is ap-plied in the learning process of the BP neural network to correct weights and threshold of BP network,and improve the convergence per-formance. The optimized BP neural network is used in the intrusion detection,and simulation experiments on BP network with different algorithm is made with standard intrusion detection data. The results show that the improved BP algorithm has less number of iterations, the convergence rate has increased,improving the intrusion detection rate too

相似文献/References:

[1]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(12):143.
[2]马志远,曹宝香.改进的决策树算法在入侵检测中的应用[J].计算机技术与发展,2014,24(01):151.
 MA Zhi-yuan,CAO Bao-xiang.Application of Improved Decision Tree Algorithm in Intrusion Detection System[J].,2014,24(12):151.
[3]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(12):148.
[4]林英 张雁 欧阳佳.日志检测技术在计算机取证中的应用[J].计算机技术与发展,2010,(06):254.
 LIN Ying,ZHANG Yan,OU Yang-jia.Application of Log Testing Technology in Computer Forensics[J].,2010,(12):254.
[5]李钦 余谅.基于免疫遗传算法的网格入侵检测模型[J].计算机技术与发展,2009,(05):162.
 LI Qin,YU Liang.Grid Intrusion Detection Model Based on Immune Genetic Algorithm[J].,2009,(12):162.
[6]黄世权.网络存储安全分析[J].计算机技术与发展,2009,(05):170.
 HUANG Shi-quan.Analysis of Network Storage's Safety[J].,2009,(12):170.
[7]王菲露 宋杰 宋杨.BP神经网络在蛋白质二级结构预测中的应用[J].计算机技术与发展,2009,(05):217.
 WANG Fei-lu,SONG Jie,SONG Yang.Application of BP Neural Network in Protein Secondary Structure Prediction[J].,2009,(12):217.
[8]李睿 肖维民.基于孤立点挖掘的异常检测研究[J].计算机技术与发展,2009,(06):168.
 LI Rui,XIAO Wei-min.Research on Anomaly Intrusion Detection Based on Outlier Mining[J].,2009,(12):168.
[9]胡琼凯 黄建华.基于协议分析和决策树的入侵检测研究[J].计算机技术与发展,2009,(06):179.
 HU Oiong-kai,HUANG Jian-hua.Intrusion Detection Based on Protocol Analysis and Decision Tree[J].,2009,(12):179.
[10]李秉 王凤山 李晓军.一种弹炮结合武器系统作战效能评估方法[J].计算机技术与发展,2009,(06):217.
 LI Bing,WANG Feng-shan,LI Xiao-jun.An Evaluation Method of Operational Effectiveness of Anti - Aircraft Gun Missile Weapon System[J].,2009,(12):217.

更新日期/Last Update: 1900-01-01