[1]李家成,苏一丹,覃华,等.基于遗传算法的K调和均值聚类算法[J].计算机技术与发展,2013,(09):55-58.
 LI Jia-cheng,SU Yi-dan,QIN Hua,et al.K-Harmonic Means Clustering Algorithm Based on Genetic Algorithm[J].,2013,(09):55-58.
点击复制

基于遗传算法的K调和均值聚类算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年09期
页码:
55-58
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
K-Harmonic Means Clustering Algorithm Based on Genetic Algorithm
文章编号:
1673-629X(2013)09-0055-04
作者:
李家成苏一丹覃华吴丹
广西大学 计算机与电子信息学院
Author(s):
LI Jia-chengSU Yi-danQIN HuaWU Dan
关键词:
遗传算法K调和均值聚类
Keywords:
genetic algorithmK-harmonic meanclustering
文献标志码:
A
摘要:
K调和均值算法(KHM)用数据点与所有聚类中心的距离的调和平均值替代了数据点与聚类中心的最小距离,是一种对初始值不敏感、收敛速度快的有效聚类算法,但它容易陷入局部最小值。而遗传算法具有良好的全局优化能力。文中结合了KHM和遗传算法各自的优点,采用KHM计算每一代种群的聚类中心,并构造适应度函数,通过遗传算法进行一系列择优操作,成功地解决了KHM容易陷入局部最小值的问题。实验结果表明,所提出的算法不仅优化了聚类中心,而且还改善了聚类质量
Abstract:
In K-harmonic means clustering was an effective algorithm which was not sensitive to the initial value and converged quickly, it used harmonic means distance from the data point to all clustering centers to replace the minimum distance between the data point and all clustering centers. But it also easily converged to the local minimum,and genetic algorithm had a good global optimal capacity. Com-bined the advantages of KHM and genetic algorithm,used the KHM to calculate the clustering center of every population,and structure fitness function,through the genetic algorithm conduct a series of preferential operation,successfully solved the problem of KHM easily converged to the local minimum. The experiment showed the algorithm not only optimized the cluster centers,but also improved the clus-ter quality

相似文献/References:

[1]冯智明,苏一丹,覃华,等.基于遗传算法的聚类与协同过滤组合推荐算法[J].计算机技术与发展,2014,24(01):35.
 FENG Zhi-ming,SU Yi-dan,QIN Hua,et al.Recommendation Algorithm of Combining Clustering with Collaborative Filtering Based on Genetic Algorithm[J].,2014,24(09):35.
[2]余晓光 严洪森 殷乾坤.基于Flexsim的车间调度优化[J].计算机技术与发展,2010,(03):44.
 YU Xiao-guang,YAN Hong-sen,YIN Qian-kun.Workshops Scheduling Optimization Based on Flexsim Simulation[J].,2010,(09):44.
[3]贺计文 宋承祥 刘弘.基于遗传算法的八数码问题的设计及实现[J].计算机技术与发展,2010,(03):105.
 HE Ji-wen,SONG Cheng-xiang,LIU Hong.Design and Implementation of Eight Puzzle Problem Based on Genetic Algorithms[J].,2010,(09):105.
[4]沈珏萍 庄亚明.基于Agent的二级供应链企业自动谈判研究[J].计算机技术与发展,2010,(03):121.
 SHEN Jue-ping,ZHUANG Ya-ming.A Research for Company Automatic Negotiation in Secondary Supply Chain Based on Agent[J].,2010,(09):121.
[5]张磊 王晓军.基于遗传算法的业务流程测试[J].计算机技术与发展,2010,(03):155.
 ZHANG Lei,WANG Xiao-jun.Test of Business Process Based on Genetic Algorithm[J].,2010,(09):155.
[6]曹道友 程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44.
 CAO Dao-you,CHENG Jia-xing.A Genetic Algorithm Based on Modified Selection Operator and Crossover Operator[J].,2010,(09):44.
[7]范维博 周俊 许正良.应用遗传算法求解第一类装配线平衡问题[J].计算机技术与发展,2010,(02):194.
 FAN Wei-bo,ZHOU Jun,XU Zheng-liang.Appication of Genetic Algorithm to Assembly Line Balancing[J].,2010,(09):194.
[8]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(09):9.
[9]余晓光 严洪森.基于禁忌搜索遗传混合算法的装配线平衡[J].计算机技术与发展,2010,(05):5.
 YU Xiao-guang,YAN Hong-sen.Assembly Line Balancing Based on Tabu Search and Genetic Hybrid Algorithm[J].,2010,(09):5.
[10]黄永聪 张旭[] 吴义纯 吴琦 程家兴.改进的径向基函数网络的研究及应用[J].计算机技术与发展,2010,(05):158.
 HUANG Yong-cong,ZHANG Xu,WU Yi-chun,et al.Research and Application of Improved Genetic Algorithm-Based RBFANN[J].,2010,(09):158.

更新日期/Last Update: 1900-01-01