[1]王晓阳,张洪渊,沈良忠,等.基于相似性度量的高维数据聚类算法研究[J].计算机技术与发展,2013,(05):30-33.
 WANG Xiao-yang,ZHANG Hong-yuan,SHEN Liang-zhong,et al.Research on High Dimensional Clustering Algorithm Based on Similarity Measurement[J].,2013,(05):30-33.
点击复制

基于相似性度量的高维数据聚类算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年05期
页码:
30-33
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research on High Dimensional Clustering Algorithm Based on Similarity Measurement
文章编号:
1673-629X(2013)05-0030-04
作者:
王晓阳1张洪渊2沈良忠2池万乐2
[1]温州大学 物理与电子信息工程学院;[2]温州大学城市学院
Author(s):
WANG Xiao-yangZHANG Hong-yuanSHEN Liang-zhongCHI Wan-le
关键词:
高维数据相似性度量数据聚类
Keywords:
high dimensional datasimilarity measurementdata clustering
文献标志码:
A
摘要:
高维数据空间中的高维数据相似性度量问题是一个具有挑战性的课题.针对传统数据相似性度量算法在高维数据空间的不适应性,通过对传统的距离度量方法进行分析,结合高维数据特性,提出了高维数据相似性度量函数Esim( X, Y ).将其与已有的相似性度量函数Hsim( X,Y )进行比较,得出改进的算法在高维相似性度量方面的优越性,特别是在高值数据之间与低值数据之间的相对差异方面更具优势.利用数值型数据集进行实验分析,验证了该函数在高维数据空间聚类的有效性和合理性
Abstract:
The problem of similarity measurement for high dimensional data between high dimensional spaces is a challenging issue. Ai-ming at the problems of the inapplicability of the traditional measurement in high dimensional space,the improved function Esim( X,Y ) is proposed to measure the similarity between the data in high dimensional space through analyzing and summarizing the traditional meas-urement with the properties of high dimensional data. Advantages of the improved function are obvious between high dimensional space similarity measurement comparing with Hsim( X,Y ),especially in high values and low values. The experiments by numerical dataset demonstrate that the function Esim( X,Y ) is effective and reasonable in high dimensional data clustering

相似文献/References:

[1]游芳 姜建国 张坤.基于二维属性的高维数据聚类算法研究[J].计算机技术与发展,2009,(05):111.
 YOU Fang,JIANG Jian-guo,ZHANG Kun.Cluster- Algorithm Studies Based on Two- Dimensional Attribute Higher - Dimension Data[J].,2009,(05):111.
[2]施冬冬 贾瑞玉 黄义堂.基于遗传算法的高维离群点检测算法的改进[J].计算机技术与发展,2009,(03):141.
 SHI Dong-dong,JIA Rui-yu,HUANG Yi-tang.An Improved High-Dimensional Outlier Detection Algorithm Based on Genetic Algorithm[J].,2009,(05):141.
[3]汪彦龙 刘金华 王丽萍.基于对象空间关系的图像检索方法研究[J].计算机技术与发展,2006,(01):66.
 WANG Yan-long,LIU Jin-hua,WANG Li-ping.Research of Image Retrieval Method Based on Object Spatial Relationships[J].,2006,(05):66.
[4]谭志园 孙继银 王忠 张财兴.景象匹配算法研究进展与展望[J].计算机技术与发展,2012,(09):66.
 TAN Zhi-yuan,SUN Ji-yin,WANG Zhong,et al.Status and Prospect of Algorithm for Scene Matching Systems[J].,2012,(05):66.
[5]张应辉,李雪. 基于模糊聚类的旅游推荐算法[J].计算机技术与发展,2016,26(12):99.
 ZHANG Ying-hui,LI Xue. A Tourism Recommendation Algorithm Based on Fuzzy Clustering[J].,2016,26(05):99.
[6]成小海.基于 Spark 的高维数据相似性连接[J].计算机技术与发展,2018,28(08):43.[doi:10.3969/ j. issn.1673-629X.2018.08.009]
 CHENG Xiao-hai.Similarity Joins of High-dimensional Data Based on Spark[J].,2018,28(05):43.[doi:10.3969/ j. issn.1673-629X.2018.08.009]
[7]甄俊涛,刘 臣.高维数据多标签分类的食品安全预警研究[J].计算机技术与发展,2020,30(09):109.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 020]
 ZHEN Jun-tao,LIU Chen.Research on Food Safety Early Warning of Multi-label Classification of High Dimensional Data[J].,2020,30(05):109.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 020]
[8]邵昌昇 楼巍 严利民.高维数据中的相似性度量算法的改进[J].计算机技术与发展,2011,(02):1.
 SHAO Chang-sheng,LOU Wei,YAN Li-min.Optimization of Algorithm of Similarity Measurement in High-Dimensional Data[J].,2011,(05):1.

更新日期/Last Update: 1900-01-01