[1]李春生,魏军,王博,等.油田生产动态预警模型研究[J].计算机技术与发展,2013,(04):245-248.
 LI Chun-sheng,WEI Jun,WANG Bo,et al.Research on Dynamic Early Warning Model of Oilfield Production[J].,2013,(04):245-248.
点击复制

油田生产动态预警模型研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年04期
页码:
245-248
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Dynamic Early Warning Model of Oilfield Production
文章编号:
1673-629X(2013)04-0245-04
作者:
李春生魏军王博王素玲
东北石油大学 计算机与信息技术学院
Author(s):
LI Chun-shengWEI JunWANG BoWANG Su-ling
关键词:
支持向量机油田预警
Keywords:
support vector machineoilfieldwarning
文献标志码:
A
摘要:
随着大庆油田的开发进入中后期,油田生产中的各个专业都积累了大量宝贵的专业数据,这些数据不仅反映了石油开采的发展轨迹,并且记录了油田开发过程中出现的产量异常下降情况,以及针对异常所采取的增产措施.文中建立了基于支持向量机的动态预警模型,通过寻找历史生产数据中的变化规律,找到生产异常报警形成模式,通过对油田开发动态数据的实时监测,可以达到提前判断出产量的异常下降,以便及早采取针对性措施,确保原油生产的良性运行.通过对大庆油田第八采油厂的历史样本进行了训练和验证,证明模型对于油田生产中发生的异常情况具有较高的的预测准确性.实验证明模型的有效性,并且提出对模型进一步改进的相关方法
Abstract:
As the development of Daqing oil field in the middle and late stage of oil field production,various profession has accumulated a large amount of valuable data,these data not only reflect the petroleum exploitation development path,but also record the abnormal pro-duction declined in the process of oilfield development,and the take measures to increase production of the abnormal. Based on the sup-port vector machine,dynamic early warning model is established. By finding the historical production data of changes in production,find abnormal alarm formation mode. Based on the real-time monitoring for oil field development data,can judge in advance the abnormal production decline,and take targeted measures to ensure the benign operation of crude oil production. The eighth of Daqing oil field plant history samples are trained and validated,it is proved that the model for oilfield production abnormal condition has a high prediction accu-racy. Experimental results show that the model is effective,and the model is further improved correlation method

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(04):125.
[2]陈俏 曹根牛 陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,(01):247.
 CHEN Qiao,CAO Gen-niu,CHEN Liu.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].,2010,(04):247.
[3]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(04):75.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(04):17.
[5]曹庆璞 董淑福 罗赟骞.网络时延的混沌特性分析及预测[J].计算机技术与发展,2010,(04):43.
 CAO Qing-pu,DONG Shu-fu,LUO Yun-qian.Chaotic Analysis and Prediction of Internet Time- Delay[J].,2010,(04):43.
[6]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(04):84.
[7]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(04):21.
[8]孙秋凤.microRNA计算识别中的模式识别技术[J].计算机技术与发展,2010,(06):97.
 SUN Qiu-feng.Pattern Recognition Technology for MicroRNA Identification[J].,2010,(04):97.
[9]刘振岩 王勇 陈立平 马俊杰 陈天恩.基于SVM的农业智能决策Web服务的研究与实现[J].计算机技术与发展,2010,(06):213.
 LIU Zhen-yan,WANG Yong,CHEN Li-ping,et al.Research and Implementation of Intelligence Decision Web Services Based on SVM for Digital Agriculture[J].,2010,(04):213.
[10]王李冬.一种新的人脸识别算法[J].计算机技术与发展,2009,(05):147.
 WANG Li-dong.A New Algorithm of Face Recognition[J].,2009,(04):147.

更新日期/Last Update: 1900-01-01