[1]刘盼盼,李雷.SVM图像分割中最优权值组合核函数的研究[J].计算机技术与发展,2013,(03):96-100.
 LIU Pan-pan,LI Lei.Research of Optimal Weighted Combination Kernel Functions in Image Segmentation Based on SVM[J].,2013,(03):96-100.
点击复制

SVM图像分割中最优权值组合核函数的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年03期
页码:
96-100
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research of Optimal Weighted Combination Kernel Functions in Image Segmentation Based on SVM
文章编号:
1673-629X(2013)03-0096-05
作者:
刘盼盼李雷
南京邮电大学 理学院
Author(s):
LIU Pan-panLI Lei
关键词:
图像分割支持向量机核函数加权组合遍历优化
Keywords:
image segmentationsupport vector machinekernel functionweighted combinationoptimization of traversal
文献标志码:
A
摘要:
有些时候单独用常用的线性、多项式、Gauss/RBF径向基和SIGMOID核函数构造支持向量机(Support Vector Ma-chine,SVM)进行图像分割,并不能得到满意的结果.为了得到更好的分割效果,文中提出一种基于最优权值组合核函数的支持向量机图像分割方法,将作为局部核的Gauss/RBF核函数、全局核的多项式核函数,以及广泛运用的SIGMOID核函数通过两两加权来构造新的函数,并对权值进行遍历优化,找出分割效果最好的权值组合.实验结果表明,多项式核函数和SIGMOID核函数加权形成的核函数的分割效果最好,并且不同的权值对该组合核函数的分割效果影响很小,权值选择有更大的自由度,可以作为进一步研究核函数的基础
Abstract:
Sometimes support vector machines ( SVMs) formed by commonly used kernel function,such as linear,polynomial,Gauss RBF and SIGMOID kernel function,segmenting image can not obtain the satisfactory results. In order to get better segmentation result,put forward a method of image segmentation based on SVM composed by the optimal weighted combination kernel functions. Put it another way,construct a new kernel function by weighting each two of polynomial kernel function regarded as local kernel function,Gauss RBF kernel function regarded as global kernel function and SIGMOID kernel function which is widely used. Besides,optimize the weights to find the best weights for the segmentation effect. The experimental results show the combination of polynomial and SIGMOID kernel function proposed has very good and stable effect for SVM segmentation,which can be the foundation of the following up study of kernel function

相似文献/References:

[1]蒋璐璐 王适 王宝成 李慧敏 李鑫慧.一种改进的标记分水岭遥感图像分割方法[J].计算机技术与发展,2010,(01):36.
 JIANG Lu-lu,WANG Shi,WANG Bao-cheng,et al.Segmentation of Remote Sensing Image Based on an Improved Labeling Watershed Algorithm[J].,2010,(03):36.
[2]张少娴 俞琼.基于时空相关性预测的运动估计的优化[J].计算机技术与发展,2010,(01):100.
 ZHANG Shao-xian,YU Qiong.An Optimization Method for Spatiotemporal Predictive Motion Estimation[J].,2010,(03):100.
[3]王兴 冯子亮.基于自适应初始值的FCM聚类图像分割[J].计算机技术与发展,2010,(03):101.
 WANG Xing,FENG Zi-liang.An Image Segmentation Algorithm Based on Adaptive Initialization FCM Clustering[J].,2010,(03):101.
[4]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(03):125.
[5]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(03):128.
[6]陈俏 曹根牛 陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,(01):247.
 CHEN Qiao,CAO Gen-niu,CHEN Liu.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].,2010,(03):247.
[7]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(03):75.
[8]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(03):17.
[9]曹庆璞 董淑福 罗赟骞.网络时延的混沌特性分析及预测[J].计算机技术与发展,2010,(04):43.
 CAO Qing-pu,DONG Shu-fu,LUO Yun-qian.Chaotic Analysis and Prediction of Internet Time- Delay[J].,2010,(03):43.
[10]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(03):84.
[11]李雷,魏蕴婕. 结合模糊聚类与支持向量机的图像分割[J].计算机技术与发展,2014,24(07):88.
 LI Lei,WEI Yun-jie. Image Segmentation Combined FCM and SVM[J].,2014,24(03):88.
[12]杨思渊,蒋锐鹏,海仁古丽·阿不力提甫,等.基于相似度计算方法的人脸图分割[J].计算机技术与发展,2021,31(06):46.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 009]
 YANG Si-yuan,JIANG Rui-peng,Hairenguli·ABULITIFU,et al.Face Image Segmentation Based on Similarity Calculation Method[J].,2021,31(03):46.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 009]

更新日期/Last Update: 1900-01-01