[1]黎银环,张剑.改进的 K-means 算法在入侵检测中的应用[J].计算机技术与发展,2013,(01):165-168.
 LI Yin-huan,ZHANG Jian.Application of Improved K-means Clustering Algorithm in Intrusion Detection[J].,2013,(01):165-168.
点击复制

改进的 K-means 算法在入侵检测中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年01期
页码:
165-168
栏目:
安全与防范
出版日期:
1900-01-01

文章信息/Info

Title:
Application of Improved K-means Clustering Algorithm in Intrusion Detection
文章编号:
1673-629X(2013)01-0165-04
作者:
黎银环1张剑2
[1]江门职业技术学院;[2]深圳市安证计算机司法鉴定所
Author(s):
LI Yin-huanZHANG Jian
关键词:
入侵检测聚类算法K-means算法
Keywords:
intrusion detectionclustering algorithmK-means algorithm
文献标志码:
A
摘要:
传统 K-means 聚类算法存在初始聚类中心选取敏感且需要预先设定聚类数等不足,导致入侵检测效率较低.为了提高入侵检测的准确性,提出一种改进的 K-means 算法.采用分离预处理记录属性的方法,在随机抽取的数据子集中基于密度距离生成初始聚类中心;利用类内最大相似度距离和类间最小相似度距离动态生成新类而无须事先确定 K 值.通过 KDDCUP99数据集仿真实验表明,与传统的 K-means 聚类算法相比,改进的 K-means 算法有效提高了入侵检测的检测率,降低了误检率,缩短了检测时间
Abstract:
In the traditional K-means algorithm,the initial cluster center is selected sensitively and the number of clusters must be given in advice,which leads to low efficiency in intrusion detection. In order to improve detection accuracy,an improved K-means algorithm is proposed. The method of separation pretreatment record attributes is used. In randomly selected sub-data set,the initial cluster center is generated based on the density and distance. Use the largest similarity distance in classes and between classes to dynamically generate new classes without having to predetermine value of K. Simulation experiment is done in KDDCUP99. Compared with the traditional K-means clustering algorithm,the improved algorithm improves the detection rate,reduces the false detection rate and shortens the detection time

相似文献/References:

[1]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(01):143.
[2]马志远,曹宝香.改进的决策树算法在入侵检测中的应用[J].计算机技术与发展,2014,24(01):151.
 MA Zhi-yuan,CAO Bao-xiang.Application of Improved Decision Tree Algorithm in Intrusion Detection System[J].,2014,24(01):151.
[3]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(01):148.
[4]林英 张雁 欧阳佳.日志检测技术在计算机取证中的应用[J].计算机技术与发展,2010,(06):254.
 LIN Ying,ZHANG Yan,OU Yang-jia.Application of Log Testing Technology in Computer Forensics[J].,2010,(01):254.
[5]李钦 余谅.基于免疫遗传算法的网格入侵检测模型[J].计算机技术与发展,2009,(05):162.
 LI Qin,YU Liang.Grid Intrusion Detection Model Based on Immune Genetic Algorithm[J].,2009,(01):162.
[6]黄世权.网络存储安全分析[J].计算机技术与发展,2009,(05):170.
 HUANG Shi-quan.Analysis of Network Storage's Safety[J].,2009,(01):170.
[7]李睿 肖维民.基于孤立点挖掘的异常检测研究[J].计算机技术与发展,2009,(06):168.
 LI Rui,XIAO Wei-min.Research on Anomaly Intrusion Detection Based on Outlier Mining[J].,2009,(01):168.
[8]胡琼凯 黄建华.基于协议分析和决策树的入侵检测研究[J].计算机技术与发展,2009,(06):179.
 HU Oiong-kai,HUANG Jian-hua.Intrusion Detection Based on Protocol Analysis and Decision Tree[J].,2009,(01):179.
[9]汪世义.基于优化支持向量机的网络入侵检测技术研究[J].计算机技术与发展,2009,(07):177.
 WANG Shi-yi.Network Intrusion Detection Based on Improved Support Vector Machine[J].,2009,(01):177.
[10]薛俊 陈行 陶军.一种基于神经网络的入侵检测技术[J].计算机技术与发展,2009,(08):148.
 XUE Jun,CHEN Hang,TAO Jun.Technology of Intrusion Detection Based on Neural Network[J].,2009,(01):148.
[11]刘华春,候向宁,杨忠. 基于改进K均值算法的入侵检测系统设计[J].计算机技术与发展,2016,26(01):101.
 LIU Hua-chun,HOU Xiang-ning,YANG Zhong. Design of Intrusion Detection System Based on Improved K-means Algorithm[J].,2016,26(01):101.

更新日期/Last Update: 1900-01-01