[1]刘城霞.基于 MS 关联规则数据挖掘模型的应用与探讨[J].计算机技术与发展,2013,(01):25-28.
 LIU Cheng-xia.Application and Discussion of Data Mining Model Based on Microsoft Association Rules Algorithm[J].,2013,(01):25-28.
点击复制

基于 MS 关联规则数据挖掘模型的应用与探讨()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年01期
页码:
25-28
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Application and Discussion of Data Mining Model Based on Microsoft Association Rules Algorithm
文章编号:
1673-629X(2013)01-0025-04
作者:
刘城霞
北京信息科技大学 计算机学院;北京邮电大学 计算机学院
Author(s):
LIU Cheng-xia
关键词:
关联规则数据挖掘预测实例系统
Keywords:
association rules algorithmdata miningpredictionapplication system
文献标志码:
A
摘要:
文中研究了数据挖掘算法中的 MS 关联规则算法以及其在金融领域的应用.数据挖掘的作用就是要从海量的数据里找到有用的、潜在的信息,模型通过对客户账户及交易数据的过滤和深入挖掘,建立了一个为银行管理人员提供更好的智能决策和建议,为普通客户提供咨询的数据挖掘商业应用实例系统.系统的选择 Visual Studio. NET 2008进行客户端的开发,使用 ADOMD. NET 对象连接挖掘模型和建立预测目标,使用 Web 控件对展示模型的结果.客户通过输入一些个人属性以及办理业务的基本要求,查看所关心的支付情况、贷款数量和应办理的信用卡类型,银行可以针对用户的支付特点,提供相应的增值服务等.在整个实例系统的构建过程中,对关联规则模型的挖掘过程进行了详细的分析,促进了数据挖掘的应用实践
Abstract:
The application of Microsoft association rules algorithm of data mining in financial field is discussed in this paper. The function of the data mining is mining useful and potential information from the massive data. A business data mining system is created based on Microsoft association rules algorithm,which can provide better decisions and recommendations for the bank through filtering and mining the customers' transaction information. The client part of the system is developed with the Visual Studio. NET 2008. And it uses the ob-jects of ADOMD. NET to associate the data warehouse and the interface and the Web controls to display the result of mining. By using the application system analyze the customer's attributes to predict the payment ability and credit card type. The bank also can supply more service based on the customer's interest. In the creation of the instance model system the whole program of data mining is introduced in detail and this helps the development of data mining's application

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(01):120.
[2]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(01):235.
[3]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(01):114.
[4]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(01):229.
[5]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(01):93.
[6]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(01):109.
[7]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(01):113.
[8]孙名松 邸明星 王湛昱.多决策树算法在P2P网络流量检测中的应用[J].计算机技术与发展,2010,(06):126.
 SUN Ming-song,DI Ming-xing,WANG Zhan-yu.Application of Decision Tree Algorithm in Traffic Detection of P2P Network[J].,2010,(01):126.
[9]孟魁杰 董莹 赵宗涛.一种基于数据挖掘的无人飞行器故障分析方法[J].计算机技术与发展,2010,(06):225.
 MENG Kui-jie,DONG Ying,ZHAO Zong-tao.A Fault Analysis Method Based on Data Mining for Unmanned Aerial Vehicle[J].,2010,(01):225.
[10]陈伟.Apriori算法的优化方法[J].计算机技术与发展,2009,(06):80.
 CHEN Wei.Method of Apriori Algorithm Optimization[J].,2009,(01):80.
[11]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(01):143.
[12]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(01):105.
[13]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(01):84.
[14]文拯 梁建武 陈英.关联规则算法的研究[J].计算机技术与发展,2009,(05):56.
 WEN Zheng,LIANG Jian-wu,CHEN Ying.Research of Association Rules Algorithm[J].,2009,(01):56.
[15]王晓宇 秦锋 程泽凯 邹洪侠.关联规则挖掘技术的研究与应用[J].计算机技术与发展,2009,(05):220.
 WANG Xiao-yu,QIN Feng,CHENG Ze-kai,et al.Investigation and Application of Association Rules Mining[J].,2009,(01):220.
[16]王敏 刘希玉.Apriori算法在税务系统中的应用[J].计算机技术与发展,2009,(11):175.
 WANG Min,LIU Xi-yu.Application of Apriori Algorithm in Tax System[J].,2009,(01):175.
[17]董彩云 刘培华.数据挖掘技术在远程教育教学中的应用[J].计算机技术与发展,2009,(02):179.
 DONG Cai-yun,LIU Pei-hua.Application of Data Mining Technology in Instance Education[J].,2009,(01):179.
[18]刘军锋 李景文 陈大克 邓晓斌.一种改进的关联规则自顶向下算法[J].计算机技术与发展,2008,(02):136.
 LIU Jun-feng,LI Jing-wen,CHEN Da-ke,et al.An Improved Top to Bottom Algorithm for Mining Association Rules[J].,2008,(01):136.
[19]王伟 高亮 吴涛.基于遗传算法的长频繁项集挖掘方法[J].计算机技术与发展,2008,(04):19.
 WANG Wei,GAO Liang,WU Tao.A Method of Mining Long Frequent Itemset Based on Genetic Algorithm[J].,2008,(01):19.
[20]耿波 仲红 徐杰 闫娜娜.用关联分析法对负荷预测结果进行二次处理[J].计算机技术与发展,2008,(04):171.
 GENG Bo,ZHONG Hong,XU Jie,et al.Using Correlation Analysis to Treat Load Forecasting Results[J].,2008,(01):171.

更新日期/Last Update: 1900-01-01