[1]楼巍 刘捷 严利民.协同进化算法在关联规则挖掘中的应用[J].计算机技术与发展,2012,(11):13-17.
 LOU Wei,LIU Jie,YAN Li-min.Applied Research on Association Rules Mining with Co-evolution Algorithm[J].,2012,(11):13-17.
点击复制

协同进化算法在关联规则挖掘中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年11期
页码:
13-17
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Applied Research on Association Rules Mining with Co-evolution Algorithm
文章编号:
1673-629X(2012)11-0013-05
作者:
楼巍 刘捷 严利民
上海大学机电工程及自动化学院
Author(s):
LOU Wei LIU Jie YAN Li-min
School of Mechatronics Engineering and Automation, Shanghai University
关键词:
关联规则挖掘协同进化遗传算法粒子群算法
Keywords:
association rules mining co-evolution genetic algorithm ( GA ) particle swarm optimization ( PSO ) algorithm
分类号:
TP274
文献标志码:
A
摘要:
文中采用了一种协同进化算法,分别利用改进的遗传算法和粒子群算法对两个种群同时进行迭代,并在种群之间引入一种信息交互机制,使两个种群协同进化。文中最后通过实验对该协同进化算法、传统的遗传算法以及粒子群算法应用于关联规则挖掘时的性能进行比较,证明了该协同进化算法在可接受的时间复杂度前提下,不仅继承了传统遗传算法挖掘关联规则时无须产生规模庞大的候选项集和有效减少扫描数据库次数的优点,更弥补了其容易早熟收敛的缺陷,从而能高效地搜索出数据库中高质量的关联规则,这点在其应用于高维数据集时尤为显著
Abstract:
It adopts a co-evolution algorithm, which utilizes improved genetic algorithm and particle swarm optimization algorithm to it erate two populations simultaneously. Meanwhile, the mechanism of information interaction between thesetwo populations is introduced. Finally, experiments and application have been made to prove that on the premise of acceptable time complexity, not only does the coevolution algorithm inherit the superiority of traditional genetic algorithm such as reducing the number of scanning the database effectively and generating small-scale candidate item sets, but also avoid the phenomenon of premature through comparing the properties of co-evolution algorithm, traditional genetic algorithm and particle swarm optimization algorithm when used in association rules mining. High quality association rules can be found when adopted the co-evolution algorithm, especially in high-dimension database

相似文献/References:

[1]何中胜 庄燕滨.基于Apriori&Fp—growth的频繁项集发现算法[J].计算机技术与发展,2008,(07):45.
 HE Zhong-sheng,ZHUANG Yan-bin.Algorithm of Mining Frequent Itemset Based on Apriori and Fp - growth[J].,2008,(11):45.
[2]王书宇 李龙澍 汪群山.改进的协同进化遗传算法在机器博弈中的应用[J].计算机技术与发展,2008,(12):4.
 WANG Shu-yu,LI Long-shu,WANG Qun-shan.Application of Co- evolution and PSO Algorithm in Machine Game[J].,2008,(11):4.
[3]李志云 周国祥.一种基于MFP树的快速关联规则挖掘算法[J].计算机技术与发展,2007,(06):94.
 LI Zhi-yun,ZHOU Guo-xiang.A Fast Association Rule Mining Algorithm Based on MFP Tree[J].,2007,(11):94.
[4]邹丽珊 陈振洲 洪洲.复杂动力学模型参数优化问题的协同进化算法[J].计算机技术与发展,2011,(08):129.
 ZOU Li-shan,CHEN Zhen-zhou,HONG Zhou.Cooperative Co-Evolutionary Algorithm for Optimization of Kinetic Parameters[J].,2011,(11):129.
[5]贺玫璐,罗杰. 基于模拟退火机制的精英协同进化算法[J].计算机技术与发展,2015,25(01):91.
 HE Mei-lu,LUO Jie. Elite Co-evolutionary Genetic Algorithm Based on Simulated Annealing Mechanism[J].,2015,25(11):91.
[6]田兴邦,华蓓,吕颖,等. 基于动态冲突度计算的敏感规则清洗算法[J].计算机技术与发展,2015,25(02):126.
 TIAN Xing-bang,HUA Bei,Lü Ying,et al. Sensitive-rule Sanitization Algorithm Based on Computing Dynamic Conflict Degree[J].,2015,25(11):126.
[7]梅领,罗杰. 基于改进合作协同进化算法PID整定[J].计算机技术与发展,2017,27(08):37.
 MEI Ling,LUO Jie. PID Parameters Optimization with Improved Cooperative Coevolution Algorithm[J].,2017,27(11):37.
[8]赵阳,吴廖丹. 一种自底向上的最大频繁项集挖掘方法[J].计算机技术与发展,2017,27(08):57.
 ZHAO Yang,WU Liao-dan. A Bottom-up Method for Mining Maximum Frequent Itemsets[J].,2017,27(11):57.
[9]赵阳,白凡. 基于FP-tree的支持度计数优化策略[J].计算机技术与发展,2017,27(10):30.
 ZHAO Yang,BAI Fan. Support Count Optimization Method Based on FP-tree[J].,2017,27(11):30.
[10]佘雅莉,周良.基于混合蚁群关联规则挖掘的危险源分析算法[J].计算机技术与发展,2018,28(11):89.[doi:10.3969/ j. issn.1673-629X.2018.11.020]
 SHE Ya-li,ZHOU Liang.A Hazard Analysis Algorithm Based on Mixed Ant Colony Association Rules Mining[J].,2018,28(11):89.[doi:10.3969/ j. issn.1673-629X.2018.11.020]

备注/Memo

备注/Memo:
上海市学校德育创新发展专项课题(1028)楼巍(1963-),男,副教授,从事数据挖掘研究;刘捷(1987-),男,硕士研究生,研究方向为关联规则数据挖掘
更新日期/Last Update: 1900-01-01