相似文献/References:
[1]陈小芬 李翠华 杜晓凤.自适应阈值的舌象裂纹检测[J].计算机技术与发展,2009,(01):17.
CHEN Xiao-fen,LI Cui-hua,DU Xiao-feng.Detection of Tongue's Crack Based on Adaptive Threshold[J].,2009,(09):17.
[2]李晨 王军锋.一种新的提升小波自适应阈值图像去噪算法[J].计算机技术与发展,2012,(07):78.
LI Chen,WANG Jun-feng.A New Adaptive Threshold Algorithm of Image Denoising Based on Lifting Wavelet Transform[J].,2012,(09):78.
[3]汪翔 罗斌 翟素兰[] 涂铮铮.基于颜色空间的自适应阈值镜头分割算法[J].计算机技术与发展,2012,(09):37.
WANG Xiang,LUO Bin,ZHAI Su-lan,et al.Self-threshold Shot Segmentation Based on Color Space[J].,2012,(09):37.
[4]于笃发,邵建华,张晶如.基于小波自适应阈值图像去噪方法的研究[J].计算机技术与发展,2013,(08):250.
YU Du-fa,SHAO Jian-hua,ZHANG Jing-ru.Research on Image Denoising Based on Wavelet Adaptive Threshold[J].,2013,(09):250.
[5]徐钧,周西峰,郭前岗. 超声信号的小波增强与改进去噪研究[J].计算机技术与发展,2015,25(02):82.
XU Jun,ZHOU Xi-feng,GUO Qian-gang. Research on Improved De-noising and Wavelet Enhancement of Ultrasonic Signal[J].,2015,25(09):82.
[6]张心言,赵冉阳. 基于Canny的自适应边缘检测算法及性能评估[J].计算机技术与发展,2015,25(11):32.
ZHANG Xin-yan,ZHAO Ran-yang. An Adaptive Edge-detection Algorithm Based on Canny and Its Performance Evaluation[J].,2015,25(09):32.
[7]张建明,邱晓晖.基于Curvelet 变换的指纹图像去噪[J].计算机技术与发展,2018,28(05):164.[doi:10.3969/j.issn.1673-629X.2018.05.037]
ZHANG Jianming,QIU Xiaohui.Fingerprint Image Denoising Based on Curvelet Transform[J].,2018,28(09):164.[doi:10.3969/j.issn.1673-629X.2018.05.037]
[8]白小叶[],程勇[],曹雪虹[][]. 基于光照归一化分块自适应LTP特征的人脸识别[J].计算机技术与发展,2016,26(05):56.
BAI Xiao-ye[],CHENG Yong[],CAO Xue-hong[]. Face Recognition Based on Illumination Normalization and Block-based Adaptive Local Ternary Pattern[J].,2016,26(09):56.
[9]温金玉,宣士斌,肖石林.基于小波变换的自适应水岭边缘检测技术[J].计算机技术与发展,2018,28(06):77.[doi:10.3969/ j. issn.1673-629X.2018.06.017]
WEN Jin-yu,XUAN Shi-bin,XIAO Shi-lin.An Adaptive Watershed Edge Detection Technology Based on Wavelet Transform[J].,2018,28(09):77.[doi:10.3969/ j. issn.1673-629X.2018.06.017]
[10]单玉刚,汪家宝,郝峰. 基于自适应阈值的Surendra背景提取方法研究[J].计算机技术与发展,2017,27(07):91.
SHAN Yu-gang,WANG Jia-bao,HAO Feng. Research on Surendra Background Extraction Method Based on Adaptive Threshold[J].,2017,27(09):91.