[1]吕凌 曾碧.基于评估和分工合作并行蚁群机器人路径规划[J].计算机技术与发展,2011,(09):10-13.
 Lü Ling,ZENG Bi.Path Planning for Robot Introduction Parallel Ant Colony Algorithm Based on Division of Labor and Assessment[J].,2011,(09):10-13.
点击复制

基于评估和分工合作并行蚁群机器人路径规划()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年09期
页码:
10-13
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Path Planning for Robot Introduction Parallel Ant Colony Algorithm Based on Division of Labor and Assessment
文章编号:
1673-629X(2011)09-0010-04
作者:
吕凌 曾碧
广东工业大学
Author(s):
Lü LingZENG Bi
Guangdong University of Technology
关键词:
移动机器人蚁群算法评估机制并行分工
Keywords:
mobile robot ant colony algorithm assessment mechanism parallel division of labor
分类号:
TP24
文献标志码:
A
摘要:
针对复杂环境中移动机器人的导航中存在的问题,提出了一种适用于机器人路径规划的并行蚁群分工合作算法。该方法由控制中心和独立的运算单元组成,每个运算单元中使用分工合作的蚁群进行计算从而从局部和全局两个方面优化蚁群的路径搜索,并将计算发送给处于控制中心的计算机,控制中心则负责处理每个运算单元发送的阶段性的路径搜索结果并利用评估机制对每个计算机得出的结果做最后的决策。从仿真结果可以看出该算法是有效且可行的
Abstract:
In order to efficiently solve the problem of mobile robot's path planning in complex dynamic environment,proposed a new method which implemented parallel ant colony optimization algorithm based on assessment and division-cooperation of labor.This method consists of control center and independent process unit.Each process unit uses division-cooperation of labor ant colony to optimize the ant search in local and global aspect,and then sends the result to the control center.Control center was responsible for coordinating the result which got from each independent process unit and used the assessment mechanism to make final decision.Simulation result shows that this algorithm is feasible and effective

相似文献/References:

[1]段军,张清磊.蚁群算法在LEACH路由协议中的应用[J].计算机技术与发展,2014,24(01):65.
 DUAN Jun,ZHANG Qing-lei.Application of Ant Colony Algorithm Based on LEACH Routing Protocol[J].,2014,24(09):65.
[2]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(09):128.
[3]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(09):9.
[4]宋世杰 刘高峰 周忠友 卢小亮.基于改进蚁群算法求解最短路径和TSP问题[J].计算机技术与发展,2010,(04):144.
 SONG Shi-jie,LIU Gao-feng,ZHOU Zhong-you,et al.An Improved Ant Colony Algorithm Solving the Shortest Path and TSP Problem[J].,2010,(09):144.
[5]林本强 唐依珠.基于蚁群算法的移动自适应网QoS路由算法[J].计算机技术与发展,2009,(06):9.
 LIN Ben-qiang,TANG Yi-zhu.Ant Colony Algorithm Based Ad Hoc Network QoS Routing Algorithm[J].,2009,(09):9.
[6]古明家 宣士斌 廉侃超 李永胜.基于蚁群和人工鱼群算法融合的QoS路由算法[J].计算机技术与发展,2009,(07):145.
 GU Ming-jia,XUAN Shi-bin,LIAN Kan-chao,et al.QoS Routing Algorithm Based on Combination of Modified Ant Colony Algorithm and Artificial Fish Swarm Algorithm[J].,2009,(09):145.
[7]贾瑞玉 张新建 冯伦阔 李永顺.信息素增量动态更新的改进蚁群算法[J].计算机技术与发展,2009,(09):32.
 JIA Rui-yu,ZHANG Xin-jian,FENG Lun-kuo,et al.Ant Colony Algorithm with Dynamic Pheromones Increment Updating[J].,2009,(09):32.
[8]王娜 马昕.基于细化算法的移动机器人拓扑地图创建[J].计算机技术与发展,2009,(10):11.
 WANG Na,MA Xin.Mobile Robot Topological Map Building Based on Thinning Algorithm[J].,2009,(09):11.
[9]鲍娜 张德贤 孙傲冰 王飞.基于改进蚁群算法的网格组合拍卖资源分配[J].计算机技术与发展,2009,(10):149.
 BAO Na,ZHANG De-xian,SUN Ao-bing,et al.Research on Resource Allocation of Combinatorial Auction in Grid Based on Improved Ant Colony Algorithm[J].,2009,(09):149.
[10]邓义乔 张代远.蚁群算法在搜索引擎系统中的应用研究[J].计算机技术与发展,2009,(12):21.
 DENG Yi-qiao,ZHANG Dai-yuan.Research and Application of Ant Colony Algorithm in Searching Engine System[J].,2009,(09):21.
[11]张俊溪,米国际,王鑫,等.基于进化算法和模糊控制的机器人路径规划[J].计算机技术与发展,2018,28(06):49.[doi:10.3969/ j. issn.1673-629X.2018.06.011]
 ZHANG Jun-xi,MI Guo-ji,WANG Xin,et al.Research on Path Planning of Robot Based on Evolutionary Algorithm and Fuzzy Control Algorithm[J].,2018,28(09):49.[doi:10.3969/ j. issn.1673-629X.2018.06.011]

备注/Memo

备注/Memo:
广东省自然科学基金资助项目(05001801)吕凌(1984-),男,广东韶关人,硕士,研究方向为智能规划与决策;曾碧,教授,硕士研究生导师,研究方向为智能机器人技术、智能规划与决策
更新日期/Last Update: 1900-01-01